Sodium channelopathies and pain

  • Angelika Lampert
  • Andrias O. O’Reilly
  • Peter Reeh
  • Andreas Leffler
Ion Channels, Receptors and Transporters

Abstract

Chronic pain often represents a severe, debilitating condition. Up to 10% of the worldwide population are affected, and many patients are poorly responsive to current treatment strategies. Nociceptors detect noxious conditions to produce the sensation of pain, and this signal is conveyed to the CNS by means of action potentials. The fast upstroke of action potentials is mediated by voltage-gated sodium channels, of which nine pore-forming α-subunits (Nav1.1–1.9) have been identified. Heterogeneous functional properties and distinct expression patterns denote specialized functions of each subunit. The Nav1.7 and Nav1.8 subunits have emerged as key molecules involved in peripheral pain processing and in the development of an increased pain sensitivity associated with inflammation and tissue injury. Several mutations in the SCN9A gene encoding for Nav1.7 have been identified as important cellular substrates for different heritable pain syndromes. This review aims to cover recent progress on our understanding of how biophysical properties of mutant Nav1.7 translate into an aberrant electrogenesis of nociceptors. We also recapitulate the role of Nav1.8 for peripheral pain processing and of additional sodium channelopathies which have been linked to disorders with pain as a significant component.

Keywords

Sodium channel Mutation Nav1.7 Pain Patch-clamp Three dimensional computer modeling 

References

  1. 1.
    Ahmad S, Dahllund L, Eriksson AB, Hellgren D, Karlsson U, Lund P-E, Meijer IA, Meury L, Mills T, Moody A, Morinville A, Morten J, O’Donnell D, Raynoschek C, Salter H, Rouleau GA, Krupp JJ (2007) A stop codon mutation in SCN9A causes lack of pain sensation. Hum Mol Genet 16:2114–2121PubMedCrossRefGoogle Scholar
  2. 2.
    Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379:257–262PubMedCrossRefGoogle Scholar
  3. 3.
    Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548PubMedCrossRefGoogle Scholar
  4. 4.
    Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, Gold MS, Porreca F, Strichartz GR (2006) The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain 7:S1–S29PubMedCrossRefGoogle Scholar
  5. 5.
    Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C (1979) The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 379:137–142PubMedCrossRefGoogle Scholar
  6. 6.
    Beckstein O, Sansom MS (2006) A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. Phys Biol 3:147–159PubMedCrossRefGoogle Scholar
  7. 7.
    Bjornsson A, Gudmundsson G, Gudfinnsson E, Hrafnsdottir M, Benedikz J, Skuladottir S, Kristjansson K, Frigge ML, Kong A, Stefansson K, Gulcher JR (2003) Localization of a gene for migraine without aura to chromosome 4q21. Am J Hum Genet 73:986–993PubMedCrossRefGoogle Scholar
  8. 8.
    Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG (2004) Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108:237–247PubMedCrossRefGoogle Scholar
  9. 9.
    Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG (2008) Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol 64:644–653PubMedCrossRefGoogle Scholar
  10. 10.
    Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22:10277–10290PubMedGoogle Scholar
  11. 11.
    Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB (2000) Potent analgesic effects of GDNF in neuropathic pain states. Science 290:124–127PubMedCrossRefGoogle Scholar
  12. 12.
    Castro MJ, Stam AH, Lemos C, de Vries B, Vanmolkot KR, Barros J, Terwindt GM, Frants RR, Sequeiros J, Ferrari MD, Pereira-Monteiro JM, van den Maagdenberg AM (2009) First mutation in the voltage-gated Nav1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia 29:308–313PubMedCrossRefGoogle Scholar
  13. 13.
    Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25PubMedCrossRefGoogle Scholar
  14. 14.
    Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacol Rev 57:397–409PubMedCrossRefGoogle Scholar
  15. 15.
    Cestele S, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA (2006) Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. J Biol Chem 281:21332–21344PubMedCrossRefGoogle Scholar
  16. 16.
    Cestele S, Scalmani P, Rusconi R, Terragni B, Franceschetti S, Mantegazza M (2008) Self-limited hyperexcitability: functional effect of a familial hemiplegic migraine mutation of the Nav1.1 (SCN1A) Na+ channel. J Neurosci 28:7273–7283PubMedCrossRefGoogle Scholar
  17. 17.
    Chatelier A, Dahllund L, Eriksson A, Krupp J, Chahine M (2008) Biophysical properties of human Nav1.7 splice variants and their regulation by protein kinase A. J Neurophysiol 99:2241–2250PubMedCrossRefGoogle Scholar
  18. 18.
    Cheng X, Dib-Hajj S, Tyrrell L, Waxman S (2008) Mutation I136V alters electrophysiological properties of the NaV1.7 channel in a family with onset of erythromelalgia in the second decade. Mol Pain 4:1PubMedCrossRefGoogle Scholar
  19. 19.
    Choi J-S, Zhang L, Dib-Hajj SD, Han C, Tyrrell L, Lin Z, Wang X, Yang Y, Waxman SG (2009) Mexiletine-responsive erythromelalgia due to a new Nav1.7 mutation showing use-dependent current fall-off. Exp Neurol 216:383PubMedCrossRefGoogle Scholar
  20. 20.
    Choi JS, Dib-Hajj SD, Waxman SG (2006) Inherited erythermalgia: limb pain from an S4 charge-neutral Na channelopathy. Neurology 67:1563–1567PubMedCrossRefGoogle Scholar
  21. 21.
    Claes LR, Deprez L, Suls A, Baets J, Smets K, Van Dyck T, Deconinck T, Jordanova A, De Jonghe P (2009) The SCN1A variant database: a novel research and diagnostic tool. Hum Mutat 30:E904–E920PubMedCrossRefGoogle Scholar
  22. 22.
    Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 17:6512–6521PubMedGoogle Scholar
  23. 23.
    Coward K, Plumpton C, Facer P, Birch R, Carlstedt T, Tate S, Bountra C, Anand P (2000) Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 85:41–50PubMedCrossRefGoogle Scholar
  24. 24.
    Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898PubMedCrossRefGoogle Scholar
  25. 25.
    Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362PubMedCrossRefGoogle Scholar
  26. 26.
    Cummins TR, Waxman SG (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 17:3503–3514PubMedGoogle Scholar
  27. 27.
    Cummins TR, Dib-Hajj SD, Waxman SG (2004) Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 24:8232–8236PubMedCrossRefGoogle Scholar
  28. 28.
    Cummins TR, Rush AM (2007) Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev Neurother 7:1597–1612PubMedCrossRefGoogle Scholar
  29. 29.
    de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AM (2009) Molecular genetics of migraine. Hum Genet 126:115–132PubMedCrossRefGoogle Scholar
  30. 30.
    Dib-Hajj S, Black JA, Felts P, Waxman SG (1996) Down-regulation of transcripts for Na channel alpha-SNS in spinal sensory neurons following axotomy. Proc Natl Acad Sci USA 93:14950–14954PubMedCrossRefGoogle Scholar
  31. 31.
    Dib-Hajj SD, Rush AM, Cummins TR, Hisama FM, Novella S, Tyrrell L, Marshall L, Waxman SG (2005) Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128:1847–1854PubMedCrossRefGoogle Scholar
  32. 32.
    Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2007) From genes to pain: Nav1.7 and human pain disorders. Trends Neurosci 30:555–563PubMedCrossRefGoogle Scholar
  33. 33.
    Dib-Hajj SD, Estacion M, Jarecki B, Tyrrell L, Fischer T, Lawden M, Cummins TR, Waxman SG (2008) Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable. Molecular Pain 4:37PubMedCrossRefGoogle Scholar
  34. 34.
    Dib-Hajj SD, Yang Y, Waxman SG (2008) Genetics and molecular pathophysiology of Na(v)1.7-related pain syndromes. Adv Genet 63:85–110PubMedCrossRefGoogle Scholar
  35. 35.
    Dib-Hajj SD, Binshtok AM, Cummins TR, Jarvis MF, Samad T, Zimmermann K (2009) Voltage-gated sodium channels in pain states: role in pathophysiology and targets for treatment. Brain Res Rev 60:65–83PubMedCrossRefGoogle Scholar
  36. 36.
    Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, Pusch M, Strom TM (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366:371–377PubMedCrossRefGoogle Scholar
  37. 37.
    Drenth JP, Finley WH, Breedveld GJ, Testers L, Michiels JJ, Guillet G, Taieb A, Kirby RL, Heutink P (2001) The primary erythermalgia-susceptibility gene is located on chromosome 2q31-32. Am J Hum Genet 68:1277–1282PubMedCrossRefGoogle Scholar
  38. 38.
    Drenth JP, te Morsche RH, Guillet G, Taieb A, Kirby RL, Jansen JB (2005) SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels. J Invest Dermatol 124:1333–1338PubMedCrossRefGoogle Scholar
  39. 39.
    Drenth JP, Waxman SG (2007) Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 117:3603–3609PubMedCrossRefGoogle Scholar
  40. 40.
    Edgerton GB, Blumenthal KM, Hanck DA (2008) Evidence for multiple effects of ProTxII on activation gating in NaV1.5. Toxicon 52:489PubMedCrossRefGoogle Scholar
  41. 41.
    Ekberg J, Jayamanne A, Vaughan CW, Aslan S, Thomas L, Mould J, Drinkwater R, Baker MD, Abrahamsen B, Wood JN, Adams DJ, Christie MJ, Lewis RJ (2006) muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci USA 103:17030–17035PubMedCrossRefGoogle Scholar
  42. 42.
    Escayg A, Heils A, MacDonald BT, Haug K, Sander T, Meisler MH (2001) A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus—and prevalence of variants in patients with epilepsy. Am J Hum Genet 68:866–873PubMedCrossRefGoogle Scholar
  43. 43.
    Estacion M, Dib-Hajj SD, Benke PJ, te Morsche RHM, Eastman EM, Macala LJ, Drenth JPH, Waxman SG (2008) NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J Neurosci 28:11079–11088PubMedCrossRefGoogle Scholar
  44. 44.
    Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, Ostman J, Klugbauer N, Wood JN, Gardiner RM, Rees M (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52:767–774PubMedCrossRefGoogle Scholar
  45. 45.
    Fertleman CR, Ferrie CD (2006) What’s in a name—familial rectal pain syndrome becomes paroxysmal extreme pain disorder. J Neurol Neurosurg Psychiatry 77:1294–1295PubMedCrossRefGoogle Scholar
  46. 46.
    Fertleman CR, Ferrie CD, Aicardi J, Bednarek NA, Eeg-Olofsson O, Elmslie FV, Griesemer DA, Goutieres F, Kirkpatrick M, Malmros IN, Pollitzer M, Rossiter M, Roulet-Perez E, Schubert R, Smith VV, Testard H, Wong V, Stephenson JB (2007) Paroxysmal extreme pain disorder (previously familial rectal pain syndrome). Neurology 69:586–595PubMedCrossRefGoogle Scholar
  47. 47.
    Fischer TZ, Gilmore ES, Estacion M, Eastman E, Taylor S, Melanson M, Dib-Hajj SD, Waxman SG (2009) A novel Nav1.7 mutation producing carbamazepine-responsive erythromelalgia. Ann Neurol 65:733–741PubMedCrossRefGoogle Scholar
  48. 48.
    Fleidervish IA, Friedman A, Gutnick MJ (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 493(Pt 1):83–97PubMedGoogle Scholar
  49. 49.
    Foulkes T, Wood JN (2008) Pain genes. PLoS Genet 4:e1000086PubMedCrossRefGoogle Scholar
  50. 50.
    Gargus JJ, Tournay A (2007) Novel mutation confirms seizure locus SCN1A is also familial hemiplegic migraine locus FHM3. Pediatr Neurol 37:407–410PubMedCrossRefGoogle Scholar
  51. 51.
    Gecz J, Baker E, Donnelly A, Ming JE, McDonald-McGinn DM, Spinner NB, Zackai EH, Sutherland GR, Mulley JC (1999) Fibroblast growth factor homologous factor 2 (FHF2): gene structure, expression and mapping to the Börjeson–Forssman–Lehmann syndrome region in Xq26 delineated by a duplication breakpoint in a BFLS-like patient. Hum Gen 104:56–63CrossRefGoogle Scholar
  52. 52.
    Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA 93:1108–1112PubMedCrossRefGoogle Scholar
  53. 53.
    Gold MS, Levine JD, Correa AM (1998) Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 18:10345–10355PubMedGoogle Scholar
  54. 54.
    Gold MS, Weinreich D, Kim CS, Wang R, Treanor J, Porreca F, Lai J (2003) Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 23:158–166PubMedGoogle Scholar
  55. 55.
    Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T, Payne B, Radomski C, Donaldson G, Ives E, Cox J, Younghusband HB, Green R, Duff A, Boltshauser E, Grinspan GA, Dimon JH, Sibley BG, Andria G, Toscano E, Kerdraon J, Bowsher D, Pimstone SN, Samuels ME, Sherrington R, Hayden MR (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71:311–319PubMedCrossRefGoogle Scholar
  56. 56.
    Goldfarb M (2005) Fibroblast growth factor homologous factors: evolution, structure, and function. Cytokine Growth Factor Rev 16:215–220PubMedCrossRefGoogle Scholar
  57. 57.
    Han C, Rush AM, Dib-Hajj SD, Li S, Xu Z, Wang Y, Tyrrell L, Wang X, Yang Y, Waxman SG (2006) Sporadic onset of erythermalgia: a gain-of-function mutation in Nav1.7. Ann Neurol 59:553–558PubMedCrossRefGoogle Scholar
  58. 58.
    Han C, Dib-Hajj SD, Lin Z, Li Y, Eastman EM, Tyrrell L, Cao X, Yang Y, Waxman SG (2009) Early- and late-onset inherited erythromelalgia: genotype-phenotype correlation. Brain 132(Pt 7):1711–1722PubMedCrossRefGoogle Scholar
  59. 59.
    Harty TP, Dib-Hajj SD, Tyrrell L, Blackman R, Hisama FM, Rose JB, Waxman SG (2006) Na(V)1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J Neurosci 26:12566–12575PubMedCrossRefGoogle Scholar
  60. 60.
    Hillsley K, Lin JH, Stanisz A, Grundy D, Aerssens J, Peeters PJ, Moechars D, Coulie B, Stead RH (2006) Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. J Physiol 576:257–267PubMedCrossRefGoogle Scholar
  61. 61.
    Iqbal J, Bhat MI, Charoo BA, Syed WA, Sheikh MA, Bhat IN (2009) Experience with oral mexiletine in primary erythromelalgia in children. Ann Saudi Med 29:316–318PubMedCrossRefGoogle Scholar
  62. 62.
    Jarecki BW, Sheets PL, Jackson IIJO, Cummins TR (2008) Paroxysmal extreme pain disorder mutations within the D3/S4–S5 linker of Nav1.7 cause moderate destabilization of fast-inactivation. J Physiol 586:4137–4153. doi:10.1113/jphysiol.2008.154906 PubMedCrossRefGoogle Scholar
  63. 63.
    Jarecki BW, Sheets PL, Xiao Y, Jackson JO 2nd, Cummins TR (2009) Alternative splicing of Na(V)1.7 exon 5 increases the impact of the painful PEPD mutant channel I1461T. Channels (Austin) 3:259–267Google Scholar
  64. 64.
    Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci USA 104:8520–8525PubMedCrossRefGoogle Scholar
  65. 65.
    John VH, Main MJ, Powell AJ, Gladwell ZM, Hick C, Sidhu HS, Clare JJ, Tate S, Trezise DJ (2004) Heterologous expression and functional analysis of rat Nav1.8 (SNS) voltage-gated sodium channels in the dorsal root ganglion neuroblastoma cell line ND7-23. Neuropharmacology 46:425–438PubMedCrossRefGoogle Scholar
  66. 66.
    Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210PubMedCrossRefGoogle Scholar
  67. 67.
    Jung HY, Mickus T, Spruston N (1997) Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J Neurosci 17:6639–6646PubMedGoogle Scholar
  68. 68.
    Kahlig KM, Rhodes TH, Pusch M, Freilinger T, Pereira-Monteiro JM, Ferrari MD, van den Maagdenberg AM, Dichgans M, George AL Jr (2008) Divergent sodium channel defects in familial hemiplegic migraine. Proc Natl Acad Sci USA 105:9799–9804PubMedCrossRefGoogle Scholar
  69. 69.
    Kerr BJ, Souslova V, McMahon SB, Wood JN (2001) A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. NeuroReport 12:3077–3080PubMedCrossRefGoogle Scholar
  70. 70.
    Kiernan MC, Krishnan AV, Lin CS, Burke D, Berkovic SF (2005) Mutation in the Na+ channel subunit SCN1B produces paradoxical changes in peripheral nerve excitability. Brain 128:1841–1846PubMedCrossRefGoogle Scholar
  71. 71.
    Koltzenburg M, Scadding J (2001) Neuropathic pain. Curr Opin Neurol 14:641–647PubMedCrossRefGoogle Scholar
  72. 72.
    Kort ME, Drizin I, Gregg RJ, Scanio MJ, Shi L, Gross MF, Atkinson RN, Johnson MS, Pacofsky GJ, Thomas JB, Carroll WA, Krambis MJ, Liu D, Shieh CC, Zhang X, Hernandez G, Mikusa JP, Zhong C, Joshi S, Honore P, Roeloffs R, Marsh KC, Murray BP, Liu J, Werness S, Faltynek CR, Krafte DS, Jarvis MF, Chapman ML, Marron BE (2008) Discovery and biological evaluation of 5-aryl-2-furfuramides, potent and selective blockers of the Nav1.8 sodium channel with efficacy in models of neuropathic and inflammatory pain. J Med Chem 51:407–416PubMedCrossRefGoogle Scholar
  73. 73.
    Kuhnert SM, Phillips WJ, Davis MD (1999) Lidocaine and mexiletine therapy for erythromelalgia. Arch Dermatol 135:1447–1449PubMedCrossRefGoogle Scholar
  74. 74.
    Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926PubMedCrossRefGoogle Scholar
  75. 75.
    Lai J, Gold MS, Kim CS, Bian D, Ossipov MH, Hunter JC, Porreca F (2002) Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain 95:143–152PubMedCrossRefGoogle Scholar
  76. 76.
    Lai J, Hunter JC, Porreca F (2003) The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 13:291–297PubMedCrossRefGoogle Scholar
  77. 77.
    Laird JM, Souslova V, Wood JN, Cervero F (2002) Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. J Neurosci 22:8352–8356PubMedGoogle Scholar
  78. 78.
    Lampert A, Dib-Hajj S, Tyrrell L, Waxman S (2006) Size matters: erythromelalgia mutation S241T in Nav1.7 alters channel gating. J Biol Chem 281:36029–36035PubMedCrossRefGoogle Scholar
  79. 79.
    Lampert A, O’Reilly AO, Dib-Hajj SD, Tyrrell L, Wallace BA, Waxman SG (2008) A pore-blocking hydrophobic motif at the cytoplasmic aperture of the closed-state Nav1.7 channel is disrupted by the erythromelalgia-associated F1449V mutation. J Biol Chem 283:24118–24127PubMedCrossRefGoogle Scholar
  80. 80.
    Lampert A, Dib-Hajj SD, Eastman EM, Tyrrell L, Lin Z, Yang Y, Waxman SG (2009) Erythromelalgia mutation L823R shifts activation and inactivation of threshold sodium channel Nav1.7 to hyperpolarized potentials. Biochem Biophys Res Commun 390:319–324PubMedCrossRefGoogle Scholar
  81. 81.
    Lee MJ, Yu HS, Hsieh ST, Stephenson DA, Lu CJ, Yang CC (2007) Characterization of a familial case with primary erythromelalgia from Taiwan. J Neurol 254:210–214PubMedCrossRefGoogle Scholar
  82. 82.
    Leffler A, Reiprich A, Mohapatra DP, Nau C (2007) Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-resistant Nav1.8 than in TTX-sensitive Na+ channels. J Pharmacol Exp Ther 320:354–364PubMedCrossRefGoogle Scholar
  83. 83.
    Long SB, Campbell EB, Mackinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908PubMedCrossRefGoogle Scholar
  84. 84.
    Meisler MH, Kearney J, Ottman R, Escayg A (2001) Identification of epilepsy genes in human and mouse. Annu Rev Genet 35:567–588PubMedCrossRefGoogle Scholar
  85. 85.
    Michiels JJ, te Morsche RH, Jansen JB, Drenth JP (2005) Autosomal dominant erythermalgia associated with a novel mutation in the voltage-gated sodium channel alpha subunit Nav1.7. Arch Neurol 62:1587–1590PubMedCrossRefGoogle Scholar
  86. 86.
    Mickus T, Jung H, Spruston N (1999) Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons. Biophys J 76:846–860PubMedCrossRefGoogle Scholar
  87. 87.
    Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao Y-D, Garsky VM, Bogusky MJ, Mehl JT, Cohen CJ, Smith MM (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41:14734–14747PubMedCrossRefGoogle Scholar
  88. 88.
    Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955PubMedCrossRefGoogle Scholar
  89. 89.
    Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci USA 101:12706–12711PubMedCrossRefGoogle Scholar
  90. 90.
    Nathan A, Rose JB, Guite JW, Hehir D, Milovcich K (2005) Primary erythromelalgia in a child responding to intravenous lidocaine and oral mexiletine treatment. Pediatrics 115:e504–e507PubMedCrossRefGoogle Scholar
  91. 91.
    Natkunarajah J, Atherton D, Elmslie F, Mansour S, Mortimer P (2009) Treatment with carbamazepine and gabapentin of a patient with primary erythermalgia (erythromelalgia) identified to have a mutation in the SCN9A gene, encoding a voltage-gated sodium channel. Clin Exp Dermatol 34:e640–e642PubMedCrossRefGoogle Scholar
  92. 92.
    Nilsen KB, Nicholas AK, Woods CG, Mellgren SI, Nebuchennykh M, Aasly J (2009) Two novel SCN9A mutations causing insensitivity to pain. Pain 143:155–158PubMedCrossRefGoogle Scholar
  93. 93.
    O’Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TG (2006) Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J 396:255–263PubMedCrossRefGoogle Scholar
  94. 94.
    Ong BH, Tomaselli GF, Balser JR (2000) A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 116:653–662PubMedCrossRefGoogle Scholar
  95. 95.
    Priest BT, Blumenthal KM, Smith JJ, Warren VA, Smith MM (2007) ProTx-I and ProTx-II: gating modifiers of voltage-gated sodium channels. Toxicon 49:194PubMedCrossRefGoogle Scholar
  96. 96.
    Raymond CK, Castle J, Garrett-Engele P, Armour CD, Kan Z, Tsinoremas N, Johnson JM (2004) Expression of alternatively spliced sodium channel alpha-subnit genes: unique splicing patterns are observed in dorsal root ganglia. J Biol Chem 279:46234–46241. doi:10.1074/jbc.M406387200 PubMedCrossRefGoogle Scholar
  97. 97.
    Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640PubMedGoogle Scholar
  98. 98.
    Roza C, Laird JM, Souslova V, Wood JN, Cervero F (2003) The tetrodotoxin-resistant Na+ channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J Physiol 550:921–926PubMedCrossRefGoogle Scholar
  99. 99.
    Rush AM, Elliott JR (1997) Phenytoin and carbamazepine: differential inhibition of sodium currents in small cells from adult rat dorsal root ganglia. Neurosci Lett 226:95–98PubMedCrossRefGoogle Scholar
  100. 100.
    Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG (2006) A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci USA 103:8245–8250PubMedCrossRefGoogle Scholar
  101. 101.
    Rush AM, Cummins TR, Waxman SG (2007) Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 579:1–14PubMedCrossRefGoogle Scholar
  102. 102.
    Sangameswaran L, Delgado SG, Fish LM, Koch BD, Jakeman LB, Stewart GR, Sze P, Hunter JC, Eglen RM, Herman RC (1996) Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J Biol Chem 271:5953–5956PubMedCrossRefGoogle Scholar
  103. 103.
    Scheib H, McLay I, Guex N, Clare JJ, Blaney FE, Dale TJ, Tate SN, Robertson GM (2006) Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding. J Mol Model 12:813–822PubMedCrossRefGoogle Scholar
  104. 104.
    Schmalhofer W, Calhoun J, Burrows R, Bailey T, Kohler MG, Weinglass AB, Kaczorowski GJ, Garcia ML, Koltzenburg M, Priest BT (2008) ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 74:1476–1484. doi:10.1124/mol.108.047670 PubMedCrossRefGoogle Scholar
  105. 105.
    Scholz J, Woolf CJ (2002) Can we conquer pain? Nat Neurosci 5(Suppl):1062–1067PubMedCrossRefGoogle Scholar
  106. 106.
    Sheets PL, Jackson JO 2nd, Waxman SG, Dib-Hajj SD, Cummins TR (2007) A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. J Physiol 581:1019–1031PubMedCrossRefGoogle Scholar
  107. 107.
    Sheets PL, Heers C, Stoehr T, Cummins TR (2008) Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J Pharmacol Exp Ther 326:89–99PubMedCrossRefGoogle Scholar
  108. 108.
    Singh NA, Pappas C, Dahle EJ, Claes LRF, Pruess TH, De Jonghe P, Thompson J, Dixon M, Gurnett C, Peiffer A, White HS, Filloux F, Leppert MF (2009) A role of SCN9A in human epilepsies. As a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet 5:e1000649PubMedCrossRefGoogle Scholar
  109. 109.
    Smith JJ, Cummins TR, Alphy S, Blumenthal KM (2007) Molecular interactions of the gating modifier toxin ProTx-II with Nav1.5: implied existence of a novel toxin binding site coupled to activation. J Biol Chem 282:12687–12697PubMedCrossRefGoogle Scholar
  110. 110.
    Song JH, Nagata K, Huang CS, Yeh JZ, Narahashi T (1996) Differential block of two types of sodium channels by anticonvulsants. NeuroReport 7:3031–3036PubMedCrossRefGoogle Scholar
  111. 111.
    Takahashi K, Saitoh M, Hoshino H, Mimaki M, Yokoyama Y, Takamizawa M, Mizuguchi M, Lin ZM, Yang Y, Igarashi T (2007) A case of primary erythermalgia. Wintry hypothermia and encephalopathy. Neuropediatrics 38:157PubMedCrossRefGoogle Scholar
  112. 112.
    Tanaka M, Cummins TR, Ishikawa K, Dib-Hajj SD, Black JA, Waxman SG (1998) SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. NeuroReport 9:967–972PubMedCrossRefGoogle Scholar
  113. 113.
    Toib A, Lyakhov V, Marom S (1998) Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels. J Neurosci 18:1893–1903PubMedGoogle Scholar
  114. 114.
    Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43PubMedCrossRefGoogle Scholar
  115. 115.
    Vahedi K, Depienne C, Le Fort D, Riant F, Chaine P, Trouillard O, Gaudric A, Morris MA, Leguern E, Tournier-Lasserve E, Bousser MG (2009) Elicited repetitive daily blindness: a new phenotype associated with hemiplegic migraine and SCN1A mutations. Neurology 72:1178–1183PubMedCrossRefGoogle Scholar
  116. 116.
    Vanmolkot KR, Babini E, de Vries B, Stam AH, Freilinger T, Terwindt GM, Norris L, Haan J, Frants RR, Ramadan NM, Ferrari MD, Pusch M, van den Maagdenberg AM, Dichgans M (2007) The novel p.L1649Q mutation in the SCN1A epilepsy gene is associated with familial hemiplegic migraine: genetic and functional studies. Mutation in brief #957. Online. Hum Mutat 28:522PubMedCrossRefGoogle Scholar
  117. 117.
    Wang CG, Gilles N, Hamon A, Le Gall F, Stankiewicz M, Pelhate M, Xiong YM, Wang DC, Chi CW (2003) Exploration of the functional site of a scorpion alpha-like toxin by site-directed mutagenesis. Biochemistry 42:4699–4708PubMedCrossRefGoogle Scholar
  118. 118.
    Wang S-Y, Wang GK (2003) Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cell Signal 15:151PubMedCrossRefGoogle Scholar
  119. 119.
    Woolf CJ, Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55:353–364PubMedCrossRefGoogle Scholar
  120. 120.
    Xiao Y, Bingham J-P, Zhu W, Moczydlowski E, Liang S, Cummins TR (2008) Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain II voltage sensor in the closed configuration. J Biol Chem 283:27300–27313PubMedCrossRefGoogle Scholar
  121. 121.
    Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, Fan J, Bu D, Liu B, Fan Z, Wu G, Jin J, Ding B, Zhu X, Shen Y (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41:171–174PubMedCrossRefGoogle Scholar
  122. 122.
    Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:855–858PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Angelika Lampert
    • 1
  • Andrias O. O’Reilly
    • 2
  • Peter Reeh
    • 1
  • Andreas Leffler
    • 3
  1. 1.Department of Physiology and PathophysiologyFriedrich-Alexander University Erlangen-NurembergErlangenGermany
  2. 2.Department of Crystallography, Birkbeck CollegeUniversity of LondonLondonUK
  3. 3.Department of AnesthesiologyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations