Advertisement

Role of voltage-gated calcium channels in epilepsy

  • Gerald W. Zamponi
  • Philippe Lory
  • Edward Perez-ReyesEmail author
Neuroscience

Abstract

It is well established that idiopathic generalized epilepsies (IGEs) show a polygenic origin and may arise from dysfunction of various types of voltage- and ligand-gated ion channels. There is an increasing body of literature implicating both high- and low-voltage-activated (HVA and LVA) calcium channels and their ancillary subunits in IGEs. Cav2.1 (P/Q-type) calcium channels control synaptic transmission at presynaptic nerve terminals, and mutations in the gene encoding the Cav2.1 α1 subunit (CACNA1A) have been linked to absence seizures in both humans and rodents. Similarly, mutations and loss of function mutations in ancillary HVA calcium channel subunits known to co-assemble with Cav2.1 result in IGE phenotypes in mice. It is important to note that in all these mouse models with mutations in HVA subunits, there is a compensatory increase in thalamic LVA currents which likely leads to the seizure phenotype. In fact, gain-of-function mutations have been identified in Cav3.2 (an LVA or T-type calcium channel encoded by the CACNA1H gene) in patients with congenital forms of IGEs, consistent with increased excitability of neurons as a result of enhanced T-type channel function. In this paper, we provide a broad overview of the roles of voltage-gated calcium channels, their mutations, and how they might contribute to the river that terminates in epilepsy.

Keywords

Calcium channel P/Q-type channels T-type channels Epilepsy Seizures 

Notes

Acknowledgments

GWZ is a Scientist of the Alberta Heritage Foundation for Medical Research and a Canada Research Chair in Molecular Neurobiology. PL is supported by CNRS and grants from ANR (ANR-2006-Neuro35) and Fédération pour la Recherche sur le Cerveau. EPR is supported by grants from NIH (NS067456).

References

  1. 1.
    Ang CW, Carlson GC, Coulter DA (2006) Massive and specific dysregulation of direct cortical input to the hippocampus in temporal lobe epilepsy. J Neurosci 26:11850–11856CrossRefPubMedGoogle Scholar
  2. 2.
    Arias JM, Murbartián J, Vitko I et al (2005) Transfer of β subunit regulation from high to low voltage-gated Ca2+ channels. FEBS Lett 579:3907–3912CrossRefPubMedGoogle Scholar
  3. 3.
    Arikkath J, Campbell KP (2003) Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13:298–307CrossRefPubMedGoogle Scholar
  4. 4.
    Ayata C, Shimizu-Sasamata M, Lo EH et al (1999) Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the α1A subunit of P/Q type calcium channels. Neurosci 95:639–645CrossRefGoogle Scholar
  5. 5.
    Barclay J, Balaguero N, Mione M et al (2001) Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci 21:6095–6104PubMedGoogle Scholar
  6. 6.
    Baumgart JP, Perez-Reyes E (2009) Voltage-gated Ca2+ channels. In: Kew JN, Davies C (eds) Ion channels: from structure to function. Oxford University Press, London, pp. 104–130Google Scholar
  7. 7.
    Becker AJ, Pitsch J, Sochivko D et al (2008) Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci 28:13341–13353CrossRefPubMedGoogle Scholar
  8. 8.
    Berkovic SF, Mulley JC, Scheffer IE et al (2006) Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci 29:391–397CrossRefPubMedGoogle Scholar
  9. 9.
    Black JL 3 rd (2003) The voltage-gated calcium channel γ subunits: a review of the literature. J Bioenerg Biomembr 35:649–660CrossRefPubMedGoogle Scholar
  10. 10.
    Blumenfeld H (2003) From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 44(Suppl 2):7–15CrossRefPubMedGoogle Scholar
  11. 11.
    Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46(Suppl 9):21–33CrossRefPubMedGoogle Scholar
  12. 12.
    Bourinet E, Soong TW, Sutton K et al (1999) Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 2:407–415CrossRefPubMedGoogle Scholar
  13. 13.
    Brill J, Klocke R, Paul D et al (2004) entla, a novel epileptic and ataxic Cacna2d2 mutant of the mouse. J Biol Chem 279:7322–7330CrossRefPubMedGoogle Scholar
  14. 14.
    Brodbeck J, Davies A, Courtney JM et al (2002) The ducky mutation in cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated α2δ-2 protein with abnormal function. J Biol Chem 277:7684–7693CrossRefPubMedGoogle Scholar
  15. 15.
    Broicher T, Kanyshkova T, Meuth P et al (2008) Correlation of T-channel coding gene expression, I(T), and the low threshold Ca(2+) spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 39:384–399CrossRefPubMedGoogle Scholar
  16. 16.
    Burgess DL, Jones JM, Meisler MH et al (1997) Mutation of the Ca2+ channel subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88:385–392CrossRefPubMedGoogle Scholar
  17. 17.
    Caddick SJ, Wang C, Fletcher CF et al (1999) Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4 lh) and tottering (Cacna1a tg) mouse thalami. J Neurophysiol 81:2066PubMedGoogle Scholar
  18. 18.
    Catterall WA, Dib-Hajj S, Meisler MH et al (2008) Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J Neurosci 28:11768–11777CrossRefPubMedGoogle Scholar
  19. 19.
    Catterall WA, Perez-Reyes E, Snutch TP et al (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure–function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425CrossRefPubMedGoogle Scholar
  20. 20.
    Chemin J, Monteil A, Briquaire C et al (2000) Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett 478:166–172CrossRefPubMedGoogle Scholar
  21. 21.
    Chen YC, Lu JJ, Pan H et al (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243CrossRefPubMedGoogle Scholar
  22. 22.
    Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399CrossRefGoogle Scholar
  23. 23.
    Crunelli V, Toth TI, Cope DW et al (2005) The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol (Lond) 562:121–129CrossRefGoogle Scholar
  24. 24.
    Cueni L, Canepari M, Lujan R et al (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11:683–692CrossRefPubMedGoogle Scholar
  25. 25.
    De Jongh KS, Warner C, Catterall WA (1990) Subunits of purified calcium channels. α2 and δ are encoded by the same gene. J Biol Chem 265:14738–14741PubMedGoogle Scholar
  26. 26.
    Doyle J, Ren X, Lennon G et al (1997) Mutations in the Cacnl1a4 calcium channel gene are associated with seizures, cerebellar degeneration, and ataxia in tottering and leaner mutant mice. Mamm Genome 8:113–120CrossRefPubMedGoogle Scholar
  27. 27.
    Ducros A, Denier C, Joutel A et al (2001) The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 345:17–24CrossRefPubMedGoogle Scholar
  28. 28.
    Engel J, Pedley TA, Aicardi J et al. (eds) (1998) Epilepsy: a comprehensive textbook Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  29. 29.
    Ernst WL, Zhang Y, Yoo JW et al (2009) Genetic enhancement of thalamocortical network activity by elevating α1G-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 29:1615–1625CrossRefPubMedGoogle Scholar
  30. 30.
    Escayg A, De Waard M, Lee DD et al (2000) Coding and noncoding variation of the human calcium-channel β4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 66:1531–1539CrossRefPubMedGoogle Scholar
  31. 31.
    Faas GC, Vreugdenhil M, Wadman WJ (1996) Calcium currents in pyramidal CA1 neurons in vitro after kindling epileptogenesis in the hippocampus of the rat. Neurosci 75:57–67CrossRefGoogle Scholar
  32. 32.
    Fletcher CF, Lutz CM, O’Sullivan TN et al (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617CrossRefPubMedGoogle Scholar
  33. 33.
    Gardiner RM (1999) Genetic basis of the human epilepsies. Epilepsy Res 36:91–95CrossRefPubMedGoogle Scholar
  34. 34.
    Gargus JJ (2003) Unraveling monogenic channelopathies and their implications for complex polygenic disease. Am J Hum Genet 72:785–803CrossRefPubMedGoogle Scholar
  35. 35.
    Guerin AA, Feigenbaum A, Donner EJ et al (2008) Stepwise developmental regression associated with novel CACNA1A mutation. Pediatr Neurol 39:363–364CrossRefPubMedGoogle Scholar
  36. 36.
    Heron SE, Khosravani H, Varela D et al (2007) Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 62:560–568CrossRefPubMedGoogle Scholar
  37. 37.
    Heron SE, Phillips HA, Mulley JC et al (2004) Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 55:595–596CrossRefPubMedGoogle Scholar
  38. 38.
    Heron SE, Scheffer IE, Berkovic SF et al (2007) Channelopathies in idiopathic epilepsy. Neurotherapeutics 4:295–304CrossRefPubMedGoogle Scholar
  39. 39.
    Huguenard JR, Prince DA (1994) Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J Neurosci 14:5485–5502PubMedGoogle Scholar
  40. 40.
    Imbrici P, Jaffe SL, Eunson LH et al (2004) Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain 127:2682–2692CrossRefPubMedGoogle Scholar
  41. 41.
    Jouvenceau A, Eunson LH, Spauschus A et al (2001) Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 358:801–807CrossRefPubMedGoogle Scholar
  42. 42.
    Jun K, Piedras-Renteria ES, Smith SM et al (1999) Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha1A-subunit. Proc Natl Acad Sci USA 96:15245–15250CrossRefPubMedGoogle Scholar
  43. 43.
    Khosravani H, Zamponi GW (2006) Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 86:941–966CrossRefPubMedGoogle Scholar
  44. 44.
    Klugbauer N, Lacinová L, Marais E et al (1999) Molecular diversity of the calcium channel α2δ subunit. J Neurosci 19:684–691PubMedGoogle Scholar
  45. 45.
    Letts VA, Felix R, Biddlecome GH et al (1998) The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nat Genet 19:340–347CrossRefPubMedGoogle Scholar
  46. 46.
    Letts VA, Kang MG, Mahaffey CL et al (2003) Phenotypic heterogeneity in the stargazin allelic series. Mamm Genome 14:506–513CrossRefPubMedGoogle Scholar
  47. 47.
    Letts VA, Mahaffey CL, Beyer B et al (2005) A targeted mutation in Cacng4 exacerbates spike-wave seizures in stargazer (Cacng2) mice. Proc Natl Acad Sci USA 102:2123–2128CrossRefPubMedGoogle Scholar
  48. 48.
    Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664CrossRefPubMedGoogle Scholar
  49. 49.
    Llinás R, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol (Lond) 315:569–584Google Scholar
  50. 50.
    Lorenzon NM, Beam KG (2008) Disease causing mutations of calcium channels. Channels (Austin Tx) 2:163–179CrossRefGoogle Scholar
  51. 51.
    Lorenzon NM, Lutz CM, Frankel WN et al (1998) Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J Neurosci 18:4482–4489PubMedGoogle Scholar
  52. 52.
    Marini C, King MA, Archer JS et al (2003) Idiopathic generalised epilepsy of adult onset: clinical syndromes and genetics. J Neurol Neurosurg Psychiatry 74:192–196CrossRefPubMedGoogle Scholar
  53. 53.
    McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846CrossRefPubMedGoogle Scholar
  54. 54.
    McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400PubMedGoogle Scholar
  55. 55.
    McKay BE, McRory JE, Molineux ML et al (2006) Cav3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J NeuroSci 24:2581–2594CrossRefPubMedGoogle Scholar
  56. 56.
    Megías M, Emri Z, Freund TF et al (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neurosci 102:527–540CrossRefGoogle Scholar
  57. 57.
    Meisler MH, Kearney J, Ottman R et al (2001) Identification of epilepsy genes in human and mouse. Annu Rev Genet 35:567–588CrossRefPubMedGoogle Scholar
  58. 58.
    Mintz IM, Adams ME, Bean BP (1992) P-type calcium channels in rat central and peripheral neurons. Neuron 9:85–95CrossRefPubMedGoogle Scholar
  59. 59.
    Mulley JC, Scheffer IE, Harkin LA et al (2005) Susceptibility genes for complex epilepsy. Hum Mol Genet 14(2):R243–R249CrossRefPubMedGoogle Scholar
  60. 60.
    Munsch T, Budde T, Pape HC (1997) Voltage-activated intracellular calcium transients in thalamic relay cells and interneurons. NeuroReport 8:2411–2418CrossRefPubMedGoogle Scholar
  61. 61.
    Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204:1334–1336CrossRefPubMedGoogle Scholar
  62. 62.
    Oliet SH, Malenka RC, Nicoll RA (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18:969–982CrossRefPubMedGoogle Scholar
  63. 63.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  64. 64.
    Pietrobon D (2002) Calcium channels and channelopathies of the central nervous system. Mol Neurobiol 25:31–50CrossRefPubMedGoogle Scholar
  65. 65.
    Pietrobon D, Striessnig J (2003) Neurobiology of migraine. Nat Rev Neurosci 4:386–398CrossRefPubMedGoogle Scholar
  66. 66.
    Powell KL, Cain SM, Ng C et al (2009) A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 29:371–380CrossRefPubMedGoogle Scholar
  67. 67.
    Richards KS, Swensen AM, Lipscombe D et al (2007) Novel CaV2.1 clone replicates many properties of Purkinje cell CaV2.1 current. Eur J NeuroSci 26:2950–2961CrossRefPubMedGoogle Scholar
  68. 68.
    Rousset M, Cens T, Restituito S et al (2001) Functional roles of γ2, γ3, and γ4, three new Ca2+ channel subunits, in P/Q-type Ca2+ channel expressed in Xenopus oocyte. J Physiol (Lond) 532:583–593CrossRefGoogle Scholar
  69. 69.
    Sander T (1996) The genetics of idiopathic generalized epilepsy: implications for the understanding of its aetiology. Mol Med Today 2:173–180CrossRefPubMedGoogle Scholar
  70. 70.
    Singh B, Monteil A, Bidaud I et al (2007) Mutational analysis of CACNA1G in idiopathic generalized epilepsy. Hum Mutat 28:524–525CrossRefPubMedGoogle Scholar
  71. 71.
    Song I, Kim D, Choi S et al (2004) Role of the α1G T-type calcium channel in spontaneous absence seizures in mutant mice. J Neurosci 24:5249–5257CrossRefPubMedGoogle Scholar
  72. 72.
    Splawski I, Yoo DS, Stotz SC et al (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281:22085–22091CrossRefPubMedGoogle Scholar
  73. 73.
    Stuart G, Spruston N, Häusser M (2008) Dendrites. Oxford University Press, OxfordGoogle Scholar
  74. 74.
    Su H, Sochivko D, Becker A et al (2002) Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 22:3645–3655PubMedGoogle Scholar
  75. 75.
    Talley EM, Solórzano G, Depaulis A et al (2000) Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Mol Brain Res 75:159–165CrossRefPubMedGoogle Scholar
  76. 76.
    Tan NC, Mulley JC, Berkovic SF (2004) Genetic association studies in epilepsy: “the truth is out there”. Epilepsia 45:1429–1442CrossRefPubMedGoogle Scholar
  77. 77.
    Thomas EA, Reid CA, Berkovic SF et al (2009) Prediction by modeling that epilepsy may be caused by very small functional changes in ion channels. Arch Neurol 66:1225–1232CrossRefPubMedGoogle Scholar
  78. 78.
    Tomita S, Chen L, Kawasaki Y et al (2003) Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 161:805–816CrossRefPubMedGoogle Scholar
  79. 79.
    Tottene A, Conti R, Fabbro A et al (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in CaV2.1 knockin migraine mice. Neuron 61:762–773CrossRefPubMedGoogle Scholar
  80. 80.
    Trimmer JS, Rhodes KJ (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66:477–519CrossRefPubMedGoogle Scholar
  81. 81.
    Tsakiridou E, Bertollini L, de Curtis M et al (1995) Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 15:3110–3117PubMedGoogle Scholar
  82. 82.
    Turnbull J, Lohi H, Kearney JA et al (2005) Sacred disease secrets revealed: the genetics of human epilepsy. Hum Mol Genet 14:2491–2500CrossRefGoogle Scholar
  83. 83.
    Umemiya M, Berger AJ (1994) Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons. J Neurosci 14:5652–5660PubMedGoogle Scholar
  84. 84.
    Vadlamudi L, Andermann E, Lombroso CT et al (2004) Epilepsy in twins: insights from unique historical data of William Lennox. Neurology 62:1127–1133PubMedGoogle Scholar
  85. 85.
    Vadlamudi L, Scheffer IE, Berkovic SF (2003) Genetics of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 74:1359–1361CrossRefPubMedGoogle Scholar
  86. 86.
    Vitko I, Bidaud I, Arias JM et al (2007) The I–II loop controls plasma membrane expression and gating of Cav3.2T-type Ca2+ channels: a paradigm for childhood absence epilepsy. J Neurosci 27:322–330CrossRefPubMedGoogle Scholar
  87. 87.
    Vitko I, Chen Y, Arias JM et al (2005) Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci 25:4844–4855CrossRefPubMedGoogle Scholar
  88. 88.
    Wakamori M, Yamazaki K, Matsunodaira H et al (1998) Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 273:34857–34867CrossRefPubMedGoogle Scholar
  89. 89.
    Wang Y, Rowan MJ, Anwyl R (1997) Induction of LTD in the dentate gyrus in vitro is NMDA receptor independent, but dependent on Ca2+ influx via low-voltage-activated Ca2+ channels and release of Ca2+ from intracellular stores. J Neurophysiol 77:812–825PubMedGoogle Scholar
  90. 90.
    Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413PubMedGoogle Scholar
  91. 91.
    Xie G, Clapcote SJ, Nieman BJ et al (2007) Forward genetic screen of mouse reveals dominant missense mutation in the P/Q-type voltage-dependent calcium channel, CACNA1A. Genes Brain Behav 6:717–727CrossRefPubMedGoogle Scholar
  92. 92.
    Yaari Y, Yue C, Su H (2007) Recruitment of apical dendritic T-type Ca2+ channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis. J Physiol (Lond) 580:435–450CrossRefGoogle Scholar
  93. 93.
    Yang Z-Q, Barrow JC, Shipe WD et al (2008) Discovery of 1,4-substituted piperidines as potent and selective inhibitors of T-type calcium channels. J of Med Chem 51:6471–6477CrossRefGoogle Scholar
  94. 94.
    Zhang Y, Mori M, Burgess DL et al (2002) Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J Neurosci 22:6362–6371PubMedGoogle Scholar
  95. 95.
    Zhang Y, Vilaythong AP, Yoshor D et al (2004) Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant Coloboma. J Neurosci 24:5239–5248CrossRefPubMedGoogle Scholar
  96. 96.
    Zhong XL, Liu JRR, Kyle JW et al (2006) A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Gen 15:1497–1512CrossRefPubMedGoogle Scholar
  97. 97.
    Zhou Q, Godwin DW, O’Malley DM et al (1997) Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. J Neurophysiol 77:2816–2825PubMedGoogle Scholar
  98. 98.
    Zwingman TA, Neumann PE, Noebels JL et al (2001) Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J Neurosci 21:1169–1178PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gerald W. Zamponi
    • 1
  • Philippe Lory
    • 2
  • Edward Perez-Reyes
    • 3
    Email author
  1. 1.Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
  2. 2.Département de Physiologie, Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661Université de Montpellier 1 et 2MontpellierFrance
  3. 3.Department of Pharmacology and Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations