Genetically modified mice—successes and failures of a widely used technology

Molecular and Genomic Physiology

Abstract

Genetically modified mice, created by random integration of a transgene into the genome or by targeted mutation of a specific gene, have proven to be extremely powerful tools for studying gene function in vivo. In this article, we give (1) a short overview of the traditional methods in mouse transgenesis and (2) a discussion of the problems with these methods, (3) more recent methods that were developed to overcome these problems, and (4) an outlook on future directions in gene targeting.

Keywords

Transgenic mouse RNA editing Gene expression Phenotype Embryo 

References

  1. 1.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77:7380–7384CrossRefPubMedGoogle Scholar
  2. 2.
    Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512CrossRefPubMedGoogle Scholar
  3. 3.
    Thomas KR, Deng C, Capecchi MR (1992) High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol 12:2919–2923PubMedGoogle Scholar
  4. 4.
    Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36:921–924CrossRefPubMedGoogle Scholar
  5. 5.
    van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214CrossRefPubMedGoogle Scholar
  6. 6.
    Aoki K, Taketo MM (2008) Tissue-specific transgenic, conditional knockout and knock-in mice of genes in the canonical Wnt signaling pathway. Methods Mol Biol 468:307–331CrossRefPubMedGoogle Scholar
  7. 7.
    Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491CrossRefPubMedGoogle Scholar
  8. 8.
    Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 93:13176–13181CrossRefPubMedGoogle Scholar
  9. 9.
    Sun D, Huang A, Smith CJ, Stackpole CJ, Connetta JA, Shesely EG, Koller A, Kaley G (1999) Enhanced release of prostaglandins contributes to flow-induced arteriolar dilation in eNOS knockout mice. Circ Res 85:288–293PubMedGoogle Scholar
  10. 10.
    Huang A, Sun D, Carroll MA, Jiang H, Smith CJ, Connetta JA, Falck JR, Shesely EG, Koller A, Kaley G (2001) EDHF mediates flow-induced dilation in skeletal muscle arterioles of female eNOS-KO mice. Am J Physiol Heart Circ Physiol 280:H2462–H2469PubMedGoogle Scholar
  11. 11.
    Banbury Conference on genetic background in mice (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19:755–759CrossRefGoogle Scholar
  12. 12.
    Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Annu Rev Biochem 55:69–102CrossRefPubMedGoogle Scholar
  13. 13.
    Feng L, Sun W, Xia Y, Tang WW, Chanmugam P, Soyoola E, Wilson CB, Hwang D (1993) Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression. Arch Biochem Biophys 307:361–368CrossRefPubMedGoogle Scholar
  14. 14.
    Dinchuk JE, Car BD, Focht RJ, Johnston JJ, Jaffee BD, Covington MB, Contel NR, Eng VM, Collins RJ, Czerniak PM et al (1995) Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 378:406–409CrossRefPubMedGoogle Scholar
  15. 15.
    Morham SG, Langenbach R, Loftin CD, Tiano HF, Vouloumanos N, Jennette JC, Mahler JF, Kluckman KD, Ledford A, Lee CA, Smithies O (1995) Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83:473–482CrossRefPubMedGoogle Scholar
  16. 16.
    Yang T, Huang YG, Ye W, Hansen P, Schnermann JB, Briggs JP (2005) Influence of genetic background and gender on hypertension and renal failure in COX-2-deficient mice. Am J Physiol Renal Physiol 288:F1125–F1132CrossRefPubMedGoogle Scholar
  17. 17.
    Brown R, Ollerstam A, Johansson B, Skott O, Gebre-Medhin S, Fredholm B, Persson AE (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281:R1362–R1367PubMedGoogle Scholar
  18. 18.
    Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J, Schnermann J (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98:9983–9988CrossRefPubMedGoogle Scholar
  19. 19.
    Kan Z, Rouchka EC, Gish WR, States DJ (2001) Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res 11:889–900CrossRefPubMedGoogle Scholar
  20. 20.
    Oppermann M, Mizel D, Huang G, Li C, Deng C, Theilig F, Bachmann S, Briggs J, Schnermann J, Castrop H (2006) Macula densa control of renin secretion and preglomerular resistance in mice with selective deletion of the B isoform of the Na, K, 2Cl co-transporter. J Am Soc Nephrol 17:2143–2152CrossRefPubMedGoogle Scholar
  21. 21.
    Oppermann M, Mizel D, Kim SM, Chen L, Faulhaber-Walter R, Huang Y, Li C, Deng C, Briggs J, Schnermann J, Castrop H (2007) Renal function in mice with targeted disruption of the A isoform of the Na-K-2Cl co-transporter. J Am Soc Nephrol 18:440–448CrossRefPubMedGoogle Scholar
  22. 22.
    Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14:381–392CrossRefPubMedGoogle Scholar
  23. 23.
    Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486CrossRefPubMedGoogle Scholar
  24. 24.
    Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096PubMedGoogle Scholar
  25. 25.
    Sauer B (1996) Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Res 24:4608–4613CrossRefPubMedGoogle Scholar
  26. 26.
    Sauer B, Whealy M, Robbins A, Enquist L (1987) Site-specific insertion of DNA into a pseudorabies virus vector. Proc Natl Acad Sci U S A 84:9108–9112CrossRefPubMedGoogle Scholar
  27. 27.
    Gagneten S, Le Y, Miller J, Sauer B (1997) Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleic Acids Res 25:3326–3331CrossRefPubMedGoogle Scholar
  28. 28.
    Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, Andreassen TT, Wolf E, Bachmann S, Nykjaer A, Willnow TE (2003) Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 17:247–249PubMedGoogle Scholar
  29. 29.
    Theilig F, Kriz W, Jerichow T, Schrade P, Hahnel B, Willnow T, Le Hir M, Bachmann S (2007) Abrogation of protein uptake through megalin-deficient proximal tubules does not safeguard against tubulointerstitial injury. J Am Soc Nephrol 18:1824–1834CrossRefPubMedGoogle Scholar
  30. 30.
    Vooijs M, Jonkers J, Berns A (2001) A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep 2:292–297CrossRefPubMedGoogle Scholar
  31. 31.
    Mao X, Fujiwara Y, Orkin SH (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci U S A 96:5037–5042CrossRefPubMedGoogle Scholar
  32. 32.
    Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32:6086–6095CrossRefPubMedGoogle Scholar
  33. 33.
    Anastassiadis K, Fu J, Patsch C, Hu S, Weidlich S, Duerschke K, Buchholz F, Edenhofer F, Stewart AF (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2:508–515CrossRefPubMedGoogle Scholar
  34. 34.
    Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95:5505–5510CrossRefPubMedGoogle Scholar
  35. 35.
    Andreas S, Schwenk F, Kuter-Luks B, Faust N, Kuhn R (2002) Enhanced efficiency through nuclear localization signal fusion on phage PhiC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res 30:2299–2306CrossRefPubMedGoogle Scholar
  36. 36.
    Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2:e162CrossRefPubMedGoogle Scholar
  37. 37.
    Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6:719–728CrossRefPubMedGoogle Scholar
  38. 38.
    Sadowski PD (1995) The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 51:53–91CrossRefPubMedGoogle Scholar
  39. 39.
    Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A 93:6191–6196CrossRefPubMedGoogle Scholar
  40. 40.
    Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141CrossRefPubMedGoogle Scholar
  41. 41.
    Castrop H, Oppermann M, Weiss Y, Huang Y, Mizel D, Lu H, Germain S, Schweda F, Theilig F, Bachmann S, Briggs J, Kurtz A, Schnermann J (2006) Reporter gene recombination in juxtaglomerular granular and collecting duct cells by human renin promoter-Cre recombinase transgene. Physiol Genomics 25:277–285CrossRefPubMedGoogle Scholar
  42. 42.
    Sequeira Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol Renal Physiol 281:F345–F356PubMedGoogle Scholar
  43. 43.
    Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890CrossRefPubMedGoogle Scholar
  44. 44.
    Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27:4324–4327CrossRefPubMedGoogle Scholar
  45. 45.
    Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, Penninger JM, Molkentin JD (2001) Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 89:20–25CrossRefPubMedGoogle Scholar
  46. 46.
    Furr BJ, Jordan VC (1984) The pharmacology and clinical uses of tamoxifen. Pharmacol Ther 25:127–205CrossRefPubMedGoogle Scholar
  47. 47.
    Wogan GN (1997) Review of the toxicology of tamoxifen. Semin Oncol 24:S1-87–S1-97Google Scholar
  48. 48.
    Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551CrossRefPubMedGoogle Scholar
  49. 49.
    Zel'tser IZ, Balabanova EL, Lapchinskaia AV, Anufrieva RG, Gerasimova SS (1978) Comparative toxicity of oxytetracycline and its semisynthetic derivatives, methacycline and doxycycline. Antibiotiki 23:533–536PubMedGoogle Scholar
  50. 50.
    Nord AS, Chang PJ, Conklin BR, Cox AV, Harper CA, Hicks GG, Huang CC, Johns SJ, Kawamoto M, Liu S, Meng EC, Morris JH, Rossant J, Ruiz P, Skarnes WC, Soriano P, Stanford WL, Stryke D, von Melchner H, Wurst W, Yamamura K, Young SG, Babbitt PC, Ferrin TE (2006) The international gene trap consortium website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res 34:D642–D648CrossRefPubMedGoogle Scholar
  51. 51.
    Skarnes WC, von Melchner H, Wurst W, Hicks G, Nord AS, Cox T, Young SG, Ruiz P, Soriano P, Tessier-Lavigne M, Conklin BR, Stanford WL, Rossant J (2004) A public gene trap resource for mouse functional genomics. Nat Genet 36:543–544CrossRefPubMedGoogle Scholar
  52. 52.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  53. 53.
    Bagasra O, Prilliman KR (2004) RNA interference: the molecular immune system. J Mol Histol 35:545–553CrossRefPubMedGoogle Scholar
  54. 54.
    Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655CrossRefPubMedGoogle Scholar
  55. 55.
    Rao M, Sockanathan S (2005) Molecular mechanisms of RNAi: implications for development and disease. Birth Defects Res C Embryo Today 75:28–42CrossRefPubMedGoogle Scholar
  56. 56.
    Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200CrossRefPubMedGoogle Scholar
  57. 57.
    Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888CrossRefPubMedGoogle Scholar
  58. 58.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefPubMedGoogle Scholar
  59. 59.
    Xia XG, Zhou H, Ding H, Affar el B, Shi Y, Xu Z (2003) An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Res 31:e100CrossRefPubMedGoogle Scholar
  60. 60.
    Hasuwa H, Kaseda K, Einarsdottir T, Okabe M (2002) Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 532:227–230CrossRefPubMedGoogle Scholar
  61. 61.
    Coumoul X, Li W, Wang RH, Deng C (2004) Inducible suppression of Fgfr2 and Survivin in ES cells using a combination of the RNA interference (RNAi) and the Cre-LoxP system. Nucleic Acids Res 32:e85CrossRefPubMedGoogle Scholar
  62. 62.
    Coumoul X, Shukla V, Li C, Wang RH, Deng CX (2005) Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 33:e102CrossRefPubMedGoogle Scholar
  63. 63.
    Lakso M, Pichel JG, Gorman JR, Sauer B, Okamoto Y, Lee E, Alt FW, Westphal H (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A 93:5860–5865CrossRefPubMedGoogle Scholar
  64. 64.
    Xu X, Li C, Garrett-Beal L, Larson D, Wynshaw-Boris A, Deng CX (2001) Direct removal in the mouse of a floxed neo gene from a three-loxP conditional knockout allele by two novel approaches. Genesis 30:1–6CrossRefPubMedGoogle Scholar
  65. 65.
    Xu X, Weinstein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, Deng C (1998) Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125:753–765PubMedGoogle Scholar
  66. 66.
    Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266CrossRefPubMedGoogle Scholar
  67. 67.
    Wolff JA, Budker V (2005) The mechanism of naked DNA uptake and expression. Adv Genet 54:3–20PubMedGoogle Scholar
  68. 68.
    Zhang G, Budker V, Wolff JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10:1735–1737CrossRefPubMedGoogle Scholar
  69. 69.
    Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108CrossRefPubMedGoogle Scholar
  70. 70.
    McCaffrey AP, Kay MA (2002) A story of mice and men. Gene Ther 9:1563CrossRefPubMedGoogle Scholar
  71. 71.
    McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39CrossRefPubMedGoogle Scholar
  72. 72.
    McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, Kay MA (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21:639–644CrossRefPubMedGoogle Scholar
  73. 73.
    Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839CrossRefPubMedGoogle Scholar
  74. 74.
    Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–926CrossRefPubMedGoogle Scholar
  75. 75.
    Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160CrossRefPubMedGoogle Scholar
  76. 76.
    Smith J, Berg JM, Chandrasegaran S (1999) A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res 27:674–681CrossRefPubMedGoogle Scholar
  77. 77.
    Valerie K, Povirk LF (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22:5792–5812CrossRefPubMedGoogle Scholar
  78. 78.
    Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175PubMedGoogle Scholar
  79. 79.
    Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708CrossRefPubMedGoogle Scholar
  80. 80.
    Kandavelou K, Ramalingam S, London V, Mani M, Wu J, Alexeev V, Civin CI, Chandrasegaran S (2009) Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun 388:56–61CrossRefPubMedGoogle Scholar
  81. 81.
    Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701CrossRefPubMedGoogle Scholar
  82. 82.
    Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A 103:16370–16375CrossRefPubMedGoogle Scholar
  83. 83.
    Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 105:5809–5814CrossRefPubMedGoogle Scholar
  84. 84.
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651CrossRefPubMedGoogle Scholar
  85. 85.
    Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793CrossRefPubMedGoogle Scholar
  86. 86.
    Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of PhysiologyUniversity of RegensburgRegensburgGermany

Personalised recommendations