ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5

  • Leigh Wellhauser
  • Christina D’Antonio
  • Christine E. Bear
Ion Channels, Receptors and Transporters


The involvement of several members of the chloride channel (ClC) family of membrane proteins in human disease highlights the need to define the mechanisms underlying their function and the consequences of disease-causing mutations. Despite the utility of high-resolution structural models, our understanding of the molecular basis for function of the chloride channels and transporters in the family remains incomplete. In this review, we focus on recent discoveries regarding molecular mechanisms underlying the regulated chloride:proton antiporter activity of ClC-5, the protein mutated in the Dent’s disease—a kidney disease presenting with proteinuria and renal failure in severe cases. We discuss the putative role of ClC-5 in receptor-mediated endocytosis and protein uptake by the proximal renal tubule and the possible molecular and cellular consequences of disease-causing mutations. However, validation of these models will require future study of the intrinsic function of this transporter, in situ, in the membranes of recycling endosomes in proximal tubule epithelial cells.


Channels Chloride Epithelial cell Intracellular pH Ion transport pH regulation 



Relevant studies conducted in the laboratory of C.E.B. were supported by the Kidney Foundation of Canada. L.W. is a recipient of a Scholarship from the Natural Sciences & Engineering Research Council of Canada. C.D. received an Ontario Graduate Scholarship.


  1. 1.
    Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427:803–807PubMedCrossRefGoogle Scholar
  2. 2.
    Accardi A, Walden M, Nguitragool W, Jayaram H, Williams C, Miller C (2005) Separate ion pathways in a Cl-/H+ exchanger. J Gen Physiol 126:563–570PubMedCrossRefGoogle Scholar
  3. 3.
    Adachi S, Uchida S, Ito H, Hata M, Hiroe M, Marumo F, Sasaki S (1994) Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle’s loop and collecting ducts of rat kidney. J Biol Chem 269:17677–17683PubMedGoogle Scholar
  4. 4.
    Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377PubMedCrossRefGoogle Scholar
  5. 5.
    Bennetts B, Parker MW, Cromer BA (2007) Inhibition of skeletal muscle ClC-1 chloride channels by low intracellular pH and ATP. J Biol Chem 282:32780–32791PubMedCrossRefGoogle Scholar
  6. 6.
    Bennetts B, Rychkov GY, Ng HL, Morton CJ, Stapleton D, Parker MW, Cromer BA (2005) Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels. J Biol Chem 280:32452–32458PubMedCrossRefGoogle Scholar
  7. 7.
    Biemesderfer D (2006) Regulated intramembrane proteolysis of megalin: linking urinary protein and gene regulation in proximal tubule? Kidney Int 69:1717–1721PubMedCrossRefGoogle Scholar
  8. 8.
    Biemesderfer D, DeGray B, Aronson PS (2001) Active (9.6 s) and inactive (21 s) oligomers of NHE3 in microdomains of the renal brush border. J Biol Chem 276:10161–10167PubMedCrossRefGoogle Scholar
  9. 9.
    Biemesderfer D, Nagy T, DeGray B, Aronson PS (1999) Specific association of megalin and the Na+/H+ exchanger isoform NHE3 in the proximal tubule. J Biol Chem 274:17518–17524PubMedCrossRefGoogle Scholar
  10. 10.
    Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314PubMedCrossRefGoogle Scholar
  11. 11.
    Blanz J, Schweizer M, Auberson M, Maier H, Muenscher A, Hubner CA, Jentsch TJ (2007) Leukoencephalopathy upon disruption of the chloride channel ClC-2. J Neurosci 27:6581–6589PubMedCrossRefGoogle Scholar
  12. 12.
    Bokenkamp A, Bockenhauer D, Cheong HI, Hoppe B, Tasic V, Unwin R, Ludwig M (2009) Dent-2 disease: a mild variant of Lowe syndrome. J Pediatr 155:94–99PubMedCrossRefGoogle Scholar
  13. 13.
    Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ (2001) Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption. EMBO J 20:1289–1299PubMedCrossRefGoogle Scholar
  14. 14.
    Braun AP (2008) Identification of ClC-7 as a major pathway for Cl(-) movement in lysosomes. Channels (Austin) 2(PMID):18981711Google Scholar
  15. 15.
    Breslau NA (1994) Pathogenesis and management of hypercalciuric nephrolithiasis. Miner Electrolyte Metab 20:328–339PubMedGoogle Scholar
  16. 16.
    Caruso-Neves C, Pinheiro AA, Cai H, Souza-Menezes J, Guggino WB (2006) PKB and megalin determine the survival or death of renal proximal tubule cells. Proc Natl Acad Sci USA 103:18810–18815PubMedCrossRefGoogle Scholar
  17. 17.
    Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, Guggino SE (2005) High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent’s disease. Kidney Int 68:642–652PubMedCrossRefGoogle Scholar
  18. 18.
    Christensen EI, Birn H (2001) Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 280:F562–F573PubMedGoogle Scholar
  19. 19.
    Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100:8472–8477PubMedCrossRefGoogle Scholar
  20. 20.
    Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch 458:1039–1048PubMedCrossRefGoogle Scholar
  21. 21.
    Cunningham R, Esmaili A, Brown E, Biswas RS, Murtazina R, Donowitz M, Dijkman HB, van der Vlag J, Hogema BM, De Jonge HR, Shenolikar S, Wade JB, Weinman EJ (2008) Urine electrolyte, mineral, and protein excretion in NHERF-2 and NHERF-1 null mice. Am J Physiol Renal Physiol 294:F1001–F1007PubMedCrossRefGoogle Scholar
  22. 22.
    De Angeli A, Moran O, Wege S, Filleur S, Ephritikhine G, Thomine S, Barbier-Brygoo H, Gambale F (2009) ATP binding to the C-terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J Biol Chem 284:26526–26532PubMedCrossRefGoogle Scholar
  23. 23.
    Denton J, Nehrke K, Yin X, Beld AM, Strange K (2006) Altered gating and regulation of a carboxy-terminal ClC channel mutant expressed in the Caenorhabditis elegans oocyte. Am J Physiol Cell Physiol 290:C1109–C1118PubMedCrossRefGoogle Scholar
  24. 24.
    Dickerson LW, Bonthius DJ, Schutte BC, Yang B, Barna TJ, Bailey MC, Nehrke K, Williamson RA, Lamb FS (2002) Altered GABAergic function accompanies hippocampal degeneration in mice lacking ClC-3 voltage-gated chloride channels. Brain Res 958:227–250PubMedCrossRefGoogle Scholar
  25. 25.
    Donowitz M, Cha B, Zachos NC, Brett CL, Sharma A, Tse CM, Li X (2005) NHERF family and NHE3 regulation. J Physiol 567:3–11PubMedCrossRefGoogle Scholar
  26. 26.
    Duffield M, Rychkov G, Bretag A, Roberts M (2003) Involvement of helices at the dimer interface in ClC-1 common gating. J Gen Physiol 121:149–161PubMedCrossRefGoogle Scholar
  27. 27.
    Dutzler R (2007) A structural perspective on ClC channel and transporter function. FEBS Lett 581:2839–2844PubMedCrossRefGoogle Scholar
  28. 28.
    Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294PubMedCrossRefGoogle Scholar
  29. 29.
    Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300:108–112PubMedCrossRefGoogle Scholar
  30. 30.
    Erkan E, De Leon M, Devarajan P (2001) Albumin overload induces apoptosis in LLC-PK(1) cells. Am J Physiol Renal Physiol 280:F1107–F1114PubMedGoogle Scholar
  31. 31.
    Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414:558–561PubMedCrossRefGoogle Scholar
  32. 32.
    Estevez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ (2004) Functional and structural conservation of CBS domains from CLC chloride channels. J Physiol 557:363–378PubMedCrossRefGoogle Scholar
  33. 33.
    Favia M, Fanelli T, Bagorda A, Di Sole F, Reshkin SJ, Suh PG, Guerra L, Casavola V (2006) NHE3 inhibits PKA-dependent functional expression of CFTR by NHERF2 PDZ interactions. Biochem Biophys Res Commun 347:452–459PubMedCrossRefGoogle Scholar
  34. 34.
    Franke C, Iaizzo PA, Hatt H, Spittelmeister W, Ricker K, Lehmann-Horn F (1991) Altered Na+ channel activity and reduced Cl- conductance cause hyperexcitability in recessive generalized myotonia (Becker). Muscle Nerve 14:762–770PubMedCrossRefGoogle Scholar
  35. 35.
    Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard PJ, Vezzoni P, Villa A (2003) Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res 18:1740–1747PubMedCrossRefGoogle Scholar
  36. 36.
    Friedrich T, Breiderhoff T, Jentsch TJ (1999) Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J Biol Chem 274:896–902PubMedCrossRefGoogle Scholar
  37. 37.
    Gekle M, Drumm K, Mildenberger S, Freudinger R, Gassner B, Silbernagl S (1999) Inhibition of Na+-H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum. J Physiol 520:709–721PubMedCrossRefGoogle Scholar
  38. 38.
    George AL Jr, Sloan-Brown K, Fenichel GM, Mitchell GA, Spiegel R, Pascuzzi RM (1994) Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita. Hum Mol Genet 3:2071–2072PubMedGoogle Scholar
  39. 39.
    Gill JR Jr, Bartter FC (1978) Evidence for a prostaglandin-independent defect in chloride reabsorption in the loop of Henle as a proximal cause of Bartter’s syncrome. Am J Med 65:766–772PubMedCrossRefGoogle Scholar
  40. 40.
    Grand T, Mordasini D, L’Hoste S, Pennaforte T, Genete M, Biyeyeme MJ, Vargas-Poussou R, Blanchard A, Teulon J, Lourdel S (2009) Novel CLCN5 mutations in patients with Dent’s disease result in altered ion currents or impaired exchanger processing. Kidney Int 76:999–1005PubMedCrossRefGoogle Scholar
  41. 41.
    Graves AR, Curran PK, Smith CL, Mindell JA (2008) The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–792PubMedCrossRefGoogle Scholar
  42. 42.
    Gronemeier M, Condie A, Prosser J, Steinmeyer K, Jentsch TJ, Jockusch H (1994) Nonsense and missense mutations in the muscular chloride channel gene ClC-1 of myotonic mice. J Biol Chem 269:5963–5967PubMedGoogle Scholar
  43. 43.
    Gunther W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse—an animal model for Dent’s disease. Pflugers Arch 445:456–462PubMedGoogle Scholar
  44. 44.
    Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ (1998) The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392:626–630PubMedCrossRefGoogle Scholar
  45. 45.
    Hara-Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS (2005) Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem Biophys Res Commun 329:941–946PubMedCrossRefGoogle Scholar
  46. 46.
    Hara-Chikuma M, Yang B, Sonawane ND, Sasaki S, Uchida S, Verkman AS (2005) ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem 280:1241–1247PubMedCrossRefGoogle Scholar
  47. 47.
    Hebeisen S, Fahlke C (2005) Carboxy-terminal truncations modify the outer pore vestibule of muscle chloride channels. Biophys J 89:1710–1720PubMedCrossRefGoogle Scholar
  48. 48.
    Hene RJ, Koomans HA, Mees EJ (1988) Suppressed diluting segment reabsorption in Bartter’s syndrome: studies in 1 patient and synthesis of literature data. Am J Nephrol 8:402–409PubMedCrossRefGoogle Scholar
  49. 49.
    Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, Karsdal MA (2004) Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol 164:1537–1545PubMedGoogle Scholar
  50. 50.
    Hirschberg R, Wang S (2005) Proteinuria and growth factors in the development of tubulointerstitial injury and scarring in kidney disease. Curr Opin Nephrol Hypertens 14:43–52PubMedCrossRefGoogle Scholar
  51. 51.
    Hoopes RR Jr, Raja KM, Koich A, Hueber P, Reid R, Knohl SJ, Scheinman SJ (2004) Evidence for genetic heterogeneity in Dent’s disease. Kidney Int 65:1615–1620PubMedCrossRefGoogle Scholar
  52. 52.
    Hryciw DH, Ekberg J, Ferguson C, Lee A, Wang D, Parton RG, Pollock CA, Yun CC, Poronnik P (2006) Regulation of albumin endocytosis by PSD95/Dlg/ZO-1 (PDZ) scaffolds. Interaction of Na+-H+ exchange regulatory factor-2 with ClC-5. J Biol Chem 281:16068–16077PubMedCrossRefGoogle Scholar
  53. 53.
    Hryciw DH, Ekberg J, Lee A, Lensink IL, Kumar S, Guggino WB, Cook DI, Pollock CA, Poronnik P (2004) Nedd4–2 functionally interacts with ClC-5: involvement in constitutive albumin endocytosis in proximal tubule cells. J Biol Chem 279:54996–55007PubMedCrossRefGoogle Scholar
  54. 54.
    Hryciw DH, Ekberg J, Pollock CA, Poronnik P (2006) ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol 38:1036–1042PubMedCrossRefGoogle Scholar
  55. 55.
    Hryciw DH, Wang Y, Devuyst O, Pollock CA, Poronnik P, Guggino WB (2003) Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines. J Biol Chem 278:40169–40176PubMedCrossRefGoogle Scholar
  56. 56.
    Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D, Marshansky V (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8:124–136PubMedCrossRefGoogle Scholar
  57. 57.
    Igarashi T, Gunther W, Sekine T, Inatomi J, Shiraga H, Takahashi S, Suzuki J, Tsuru N, Yanagihara T, Shimazu M, Jentsch TJ, Thakker RV (1998) Functional characterization of renal chloride channel, CLCN5, mutations associated with Dent’s disease. Kidney Int 54:1850–1856PubMedCrossRefGoogle Scholar
  58. 58.
    Ignoul S, Simaels J, Hermans D, Annaert W, Eggermont J (2007) Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains. PLoS ONE 2:e474PubMedCrossRefGoogle Scholar
  59. 59.
    Jayaram H, Accardi A, Wu F, Williams C, Miller C (2008) Ion permeation through a Cl–selective channel designed from a CLC Cl-/H+ exchanger. Proc Natl Acad Sci USA 105:11194–11199PubMedCrossRefGoogle Scholar
  60. 60.
    Jentsch TJ (2005) Chloride transport in the kidney: lessons from human disease and knockout mice. J Am Soc Nephrol 16:1549–1561PubMedCrossRefGoogle Scholar
  61. 61.
    Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568PubMedGoogle Scholar
  62. 62.
    Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–514PubMedCrossRefGoogle Scholar
  63. 63.
    Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poet M, Steinfeld R, Schweizer M, Kornak U, Jentsch TJ (2005) Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J 24:1079–1091PubMedCrossRefGoogle Scholar
  64. 64.
    Kleefuss-Lie A, Friedl W, Cichon S, Haug K, Warnstedt M, Alekov A, Sander T, Ramirez A, Poser B, Maljevic S, Hebeisen S, Kubisch C, Rebstock J, Horvath S, Hallmann K, Dullinger JS, Rau B, Haverkamp F, Beyenburg S, Schulz H, Janz D, Giese B, Muller-Newen G, Propping P, Elger CE, Fahlke C, Lerche H (2009) CLCN2 variants in idiopathic generalized epilepsy. Nat Genet 41:954–955PubMedCrossRefGoogle Scholar
  65. 65.
    Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzeschik KH, Jentsch TJ (1992) The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257:797–800PubMedCrossRefGoogle Scholar
  66. 66.
    Konrad M, Vollmer M, Lemmink HH, van den Heuvel LP, Jeck N, Vargas-Poussou R, Lakings A, Ruf R, Deschenes G, Antignac C, Guay-Woodford L, Knoers NV, Seyberth HW, Feldmann D, Hildebrandt F (2000) Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11:1449–1459PubMedGoogle Scholar
  67. 67.
    Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215PubMedCrossRefGoogle Scholar
  68. 68.
    Kubisch C, Schmidt-Rose T, Fontaine B, Bretag AH, Jentsch TJ (1998) ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence. Hum Mol Genet 7:1753–1760PubMedCrossRefGoogle Scholar
  69. 69.
    Lamb FS, Moreland JG, Miller FJ Jr (2009) Electrophysiology of reactive oxygen production in signaling endosomes. Antioxid Redox Signal 11:1335–1347PubMedCrossRefGoogle Scholar
  70. 70.
    Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC (2006) ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440:220–223PubMedCrossRefGoogle Scholar
  71. 71.
    Larsson M, Hjalm G, Sakwe AM, Engstrom A, Hoglund AS, Larsson E, Robinson RC, Sundberg C, Rask L (2003) Selective interaction of megalin with postsynaptic density-95 (PSD-95)-like membrane-associated guanylate kinase (MAGUK) proteins. Biochem J 373:381–391PubMedCrossRefGoogle Scholar
  72. 72.
    Li Y, Cong R, Biemesderfer D (2008) The COOH terminus of megalin regulates gene expression in opossum kidney proximal tubule cells. Am J Physiol Cell Physiol 295:C529–C537PubMedCrossRefGoogle Scholar
  73. 73.
    Li Q, Harraz MM, Zhou W, Zhang LN, Ding W, Zhang Y, Eggleston T, Yeaman C, Banfi B, Engelhardt JF (2006) Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol Cell Biol 26:140–154PubMedCrossRefGoogle Scholar
  74. 74.
    Lim HH, Miller C (2009) Intracellular proton-transfer mutants in a CLC Cl-/H+ exchanger. J Gen Physiol 133:131–138PubMedCrossRefGoogle Scholar
  75. 75.
    Lloyd SE, Gunther W, Pearce SH, Thomson A, Bianchi ML, Bosio M, Craig IW, Fisher SE, Scheinman SJ, Wrong O, Jentsch TJ, Thakker RV (1997) Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Hum Mol Genet 6:1233–1239PubMedCrossRefGoogle Scholar
  76. 76.
    Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449PubMedCrossRefGoogle Scholar
  77. 77.
    Lorenz C, Meyer-Kleine C, Steinmeyer K, Koch MC, Jentsch TJ (1994) Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia. Hum Mol Genet 3:941–946PubMedCrossRefGoogle Scholar
  78. 78.
    Ludwig M, Doroszewicz J, Seyberth HW, Bokenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S (2005) Functional evaluation of Dent’s disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum Genet 117:228–237PubMedCrossRefGoogle Scholar
  79. 79.
    Markovic S, Dutzler R (2007) The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface. Structure 15:715–725PubMedCrossRefGoogle Scholar
  80. 80.
    Marshansky V, Ausiello DA, Brown D (2002) Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr Opin Nephrol Hypertens 11:527–537PubMedCrossRefGoogle Scholar
  81. 81.
    Marshansky V, Vinay P (1996) Proton gradient formation in early endosomes from proximal tubules. Biochim Biophys Acta 1284:171–180PubMedCrossRefGoogle Scholar
  82. 82.
    Meyer S, Dutzler R (2006) Crystal structure of the cytoplasmic domain of the chloride channel ClC-0. Structure 14:299–307PubMedCrossRefGoogle Scholar
  83. 83.
    Meyer S, Savaresi S, Forster IC, Dutzler R (2007) Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat Struct Mol Biol 14:60–67PubMedCrossRefGoogle Scholar
  84. 84.
    Miller FJ Jr, Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS (2007) Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 101:663–671PubMedCrossRefGoogle Scholar
  85. 85.
    Mo L, Xiong W, Qian T, Sun H, Wills NK (2004) Coexpression of complementary fragments of ClC-5 and restoration of chloride channel function in a Dent’s disease mutation. Am J Physiol Cell Physiol 286:C79–C89PubMedCrossRefGoogle Scholar
  86. 86.
    Mohammad-Panah R, Wellhauser L, Steinberg BE, Wang Y, Huan LJ, Liu XD, Bear CE (2009) An essential role for ClC-4 in transferrin receptor function revealed in studies of fibroblasts derived from Clcn4-null mice. J Cell Sci 122:1229–1237PubMedCrossRefGoogle Scholar
  87. 87.
    Moreland JG, Davis AP, Bailey G, Nauseef WM, Lamb FS (2006) Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 281:12277–12288PubMedCrossRefGoogle Scholar
  88. 88.
    Moreland JG, Davis AP, Matsuda JJ, Hook JS, Bailey G, Nauseef WM, Lamb FS (2007) Endotoxin priming of neutrophils requires NADPH oxidase-generated oxidants and is regulated by the anion transporter ClC-3. J Biol Chem 282:33958–33967PubMedCrossRefGoogle Scholar
  89. 89.
    Moulin P, Igarashi T, Van der Smissen P, Cosyns JP, Verroust P, Thakker RV, Scheinman SJ, Courtoy PJ, Devuyst O (2003) Altered polarity and expression of H+-ATPase without ultrastructural changes in kidneys of Dent’s disease patients. Kidney Int 63:1285–1295PubMedCrossRefGoogle Scholar
  90. 90.
    Neutzsky-Wulff AV, Karsdal MA, Henriksen K (2008) Characterization of the bone phenotype in ClC-7-deficient mice. Calcif Tissue Int 83:425–437PubMedCrossRefGoogle Scholar
  91. 91.
    Niemeyer MI, Yusef YR, Cornejo I, Flores CA, Sepulveda FV, Cid LP (2004) Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol Genomics 19:74–83PubMedCrossRefGoogle Scholar
  92. 92.
    Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103PubMedCrossRefGoogle Scholar
  93. 93.
    Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423PubMedCrossRefGoogle Scholar
  94. 94.
    Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl- -channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373PubMedCrossRefGoogle Scholar
  95. 95.
    Poet M, Kornak U, Schweizer M, Zdebik AA, Scheel O, Hoelter S, Wurst W, Schmitt A, Fuhrmann JC, Planells-Cases R, Mole SE, Hubner CA, Jentsch TJ (2006) Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proc Natl Acad Sci USA 103:13854–13859PubMedCrossRefGoogle Scholar
  96. 96.
    Pook MA, Wrong O, Wooding C, Norden AG, Feest TG, Thakker RV (1993) Dent’s disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum Mol Genet 2:2129–2134PubMedCrossRefGoogle Scholar
  97. 97.
    Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 19:423–434PubMedCrossRefGoogle Scholar
  98. 98.
    Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, Zara F, Luna D, Bulteau C, Kaminska A, Ville D, Cieuta C, Picard F, Prud’homme JF, Bate L, Sundquist A, Gardiner RM, Janssen GA, de Haan GJ, Kasteleijn-Nolst-Trenite DG, Bader A, Lindhout D, Riess O, Wienker TF, Janz D, Reis A (2000) Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9:1465–1472PubMedCrossRefGoogle Scholar
  99. 99.
    Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427PubMedCrossRefGoogle Scholar
  100. 100.
    Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC (1996) Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15:2381–2387PubMedGoogle Scholar
  101. 101.
    Schwake M, Friedrich T, Jentsch TJ (2001) An internalization signal in ClC-5, an endosomal Cl-channel mutated in dent’s disease. J Biol Chem 276:12049–12054PubMedCrossRefGoogle Scholar
  102. 102.
    Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113:274–284PubMedGoogle Scholar
  103. 103.
    Sethi SK, Ludwig M, Kabra M, Hari P, Bagga A (2009) Vitamin A responsive night blindness in Dent’s disease. Pediatr Nephrol 24:1765–1770PubMedCrossRefGoogle Scholar
  104. 104.
    Shenolikar S, Minkoff CM, Steplock DA, Evangelista C, Liu M, Weinman EJ (2001) N-terminal PDZ domain is required for NHERF dimerization. FEBS Lett 489:233–236PubMedCrossRefGoogle Scholar
  105. 105.
    Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178PubMedCrossRefGoogle Scholar
  106. 106.
    Smith AJ, Reed AA, Loh NY, Thakker RV, Lippiat JD (2009) Characterization of Dent’s disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure. Am J Physiol Renal Physiol 296:F390–F397PubMedCrossRefGoogle Scholar
  107. 107.
    Steinmeyer K, Klocke R, Ortland C, Gronemeier M, Jockusch H, Grunder S, Jentsch TJ (1991) Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354:304–308PubMedCrossRefGoogle Scholar
  108. 108.
    Steinmeyer K, Lorenz C, Pusch M, Koch MC, Jentsch TJ (1994) Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J 13:737–743PubMedGoogle Scholar
  109. 109.
    Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bosl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–196PubMedCrossRefGoogle Scholar
  110. 110.
    Thiemann A, Grunder S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60PubMedCrossRefGoogle Scholar
  111. 111.
    Traebert M, Roth J, Biber J, Murer H, Kaissling B (2000) Internalization of proximal tubular type II Na-P(i) cotransporter by PTH: immunogold electron microscopy. Am J Physiol Renal Physiol 278:F148–F154PubMedGoogle Scholar
  112. 112.
    Tseng PY, Bennetts B, Chen TY (2007) Cytoplasmic ATP inhibition of CLC-1 is enhanced by low pH. J Gen Physiol 130:217–221PubMedCrossRefGoogle Scholar
  113. 113.
    Uchida S, Marumo F (2000) Severely impaired urine-concentrating ability in mice lacking the CLC-K1 chloride channel. Exp Nephrol 8:361–365PubMedCrossRefGoogle Scholar
  114. 114.
    Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F (1993) Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem 268:3821–3824PubMedGoogle Scholar
  115. 115.
    Utsch B, Bokenkamp A, Benz MR, Besbas N, Dotsch J, Franke I, Frund S, Gok F, Hoppe B, Karle S, Kuwertz-Broking E, Laube G, Neb M, Nuutinen M, Ozaltin F, Rascher W, Ring T, Tasic V, van Wijk JA, Ludwig M (2006) Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am J Kidney Dis 48(942):e1–e14PubMedGoogle Scholar
  116. 116.
    Vanoye CG, George AL Jr (2002) Functional characterization of recombinant human ClC-4 chloride channels in cultured mammalian cells. J Physiol 539:373–383PubMedCrossRefGoogle Scholar
  117. 117.
    Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW (2002) Barttin increases surface expression and changes current properties of ClC-K channels. Pflugers Arch 444:411–418PubMedCrossRefGoogle Scholar
  118. 118.
    Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945PubMedCrossRefGoogle Scholar
  119. 119.
    Wartosch L, Fuhrmann JC, Schweizer M, Stauber T, Jentsch TJ (2009) Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7. Faseb J PMID: 19661288Google Scholar
  120. 120.
    Weinman EJ, Steplock D, Donowitz M, Shenolikar S (2000) NHERF associations with sodium-hydrogen exchanger isoform 3 (NHE3) and ezrin are essential for cAMP-mediated phosphorylation and inhibition of NHE3. Biochemistry 39:6123–6129PubMedCrossRefGoogle Scholar
  121. 121.
    Weinman EJ, Wang Y, Wang F, Greer C, Steplock D, Shenolikar S (2003) A C-terminal PDZ motif in NHE3 binds NHERF-1 and enhances cAMP inhibition of sodium-hydrogen exchange. Biochemistry 42:12662–12668PubMedCrossRefGoogle Scholar
  122. 122.
    Weisz OA (2003) Organelle acidification and disease. Traffic 4:57–64PubMedCrossRefGoogle Scholar
  123. 123.
    Wischmeyer E, Nolte E, Klocke R, Jockusch H, Brinkmeier H (1993) Development of electrical myotonia in the ADR mouse: role of chloride conductance in myotubes and neonatal animals. Neuromuscul Disord 3:267–274PubMedCrossRefGoogle Scholar
  124. 124.
    Wollnik B, Kubisch C, Steinmeyer K, Pusch M (1997) Identification of functionally important regions of the muscular chloride channel CIC-1 by analysis of recessive and dominant myotonic mutations. Hum Mol Genet 6:805–811PubMedCrossRefGoogle Scholar
  125. 125.
    Wrong OM, Norden AG, Feest TG (1994) Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. Qjm 87(8):473–493PubMedGoogle Scholar
  126. 126.
    Wu F, Reed AA, Williams SE, Loh NY, Lippiat JD, Christie PT, Large O, Bettinelli A, Dillon MJ, Goldraich NP, Hoppe B, Lhotta K, Loirat C, Malik R, Morel D, Kotanko P, Roussel B, Rubinger D, Schrander-Stumpel C, Serdaroglu E, Nesbit MA, Ashcroft F, Thakker RV (2009) Mutational analysis of CLC-5, cofilin and CLC-4 in patients with Dent’s disease. Nephron Physiol 112:53–62CrossRefGoogle Scholar
  127. 127.
    Yamamoto K, Cox JP, Friedrich T, Christie PT, Bald M, Houtman PN, Lapsley MJ, Patzer L, Tsimaratos M, Van THWG, Yamaoka K, Jentsch TJ, Thakker RV (2000) Characterization of renal chloride channel (CLCN5) mutations in Dent’s disease. J Am Soc Nephrol 11:1460–1468PubMedGoogle Scholar
  128. 128.
    Yoshikawa M, Uchida S, Ezaki J, Rai T, Hayama A, Kobayashi K, Kida Y, Noda M, Koike M, Uchiyama Y, Marumo F, Kominami E, Sasaki S (2002) CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis. Genes Cells 7:597–605PubMedCrossRefGoogle Scholar
  129. 129.
    Yun CH, Oh S, Zizak M, Steplock D, Tsao S, Tse CM, Weinman EJ, Donowitz M (1997) cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc Natl Acad Sci USA 94:3010–3015PubMedCrossRefGoogle Scholar
  130. 130.
    Zdebik AA, Zifarelli G, Bergsdorf EY, Soliani P, Scheel O, Jentsch TJ, Pusch M (2008) Determinants of anion-proton coupling in mammalian endosomal CLC proteins. J Biol Chem 283:4219–4227PubMedCrossRefGoogle Scholar
  131. 131.
    Zhang XD, Tseng PY, Chen TY (2008) ATP inhibition of CLC-1 is controlled by oxidation and reduction. J Gen Physiol 132:421–428PubMedCrossRefGoogle Scholar
  132. 132.
    Zifarelli G, Pusch M (2008) The muscle chloride channel ClC-1 is not directly regulated by intracellular ATP. J Gen Physiol 131:109–116PubMedCrossRefGoogle Scholar
  133. 133.
    Zifarelli G, Pusch M (2009) Conversion of the 2 Cl(-)/1 H+ antiporter ClC-5 in a NO3(-)/H+ antiporter by a single point mutation. EMBO J 28:175–182PubMedCrossRefGoogle Scholar
  134. 134.
    Zifarelli G, Pusch M (2009) Intracellular regulation of human ClC-5 by adenine nucleotides. EMBO Rep 10:1111–1116PubMedCrossRefGoogle Scholar
  135. 135.
    Zou Z, Chung B, Nguyen T, Mentone S, Thomson B, Biemesderfer D (2004) Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J Biol Chem 279:34302–34310PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Leigh Wellhauser
    • 1
  • Christina D’Antonio
    • 2
  • Christine E. Bear
    • 1
    • 2
    • 3
  1. 1.Department of Biochemistry, Faculty of MedicineUniversity of TorontoTorontoCanada
  2. 2.Department of Physiology, Faculty of MedicineUniversity of TorontoTorontoCanada
  3. 3.Programme in Molecular Structure and Function, Research InstituteHospital for Sick ChildrenTorontoCanada

Personalised recommendations