Nicotinic receptor channelopathies and epilepsy

Ion Channels and Transporters

Abstract

Characterized by sudden episodes called seizures, epilepsy was recognized long ago as a neurological disorder that can have multiple forms ranging from benign to life threatening depending upon its severity. Although several evidences indicated that genes play an important role in at least half of the patients, it is only with the advances in molecular biology and genetics that the puzzle about oligogenic and monogenic epilepsies slowly starts to unfold. The finding of an association between a monogenic form of epilepsy and a mutation in the gene encoding the neuronal nicotinic acetylcholine receptor subunit CHRNA4 marked, in 1995, a turning point in our understanding of epilepsy. It also marked the first step towards the today widely acknowledged concept of epilepsies as channelopathies. Several mutations in nicotinic acetylcholine receptor genes have, since then, been identified, and the functional properties of these mutated receptors were characterized. In this work, we review, in the light of the latest discoveries, the effects caused by the mutations on the physiological properties of the receptors and the impact of such mutations on neuronal network functions.

Keywords

Acetylcholine Brain Epilepsy Neurotransmission Nicotinic receptor 

Notes

Acknowledgments

This work was supported by the Swiss National Science Foundation to DB (3100A0-101787/2) and by the DFG (STE16511-2, BE 3834/1-2) to OKS and to DB.

References

  1. 1.
    Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120CrossRefPubMedGoogle Scholar
  2. 2.
    Aridon P, Marini C, Di Resta C, Brilli E et al (2006) Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am J Hum Genet 79:342–350CrossRefPubMedGoogle Scholar
  3. 3.
    Ballivet M, Nef P, Couturier S, Rungger D et al (1988) Electrophysiology of a chick neuronal nicotinic acetylcholine receptor expressed in Xenopus oocytes after cDNA injection. Neuron 1:847–852CrossRefPubMedGoogle Scholar
  4. 4.
    Bertrand D, Elmslie F, Hughes E, Trounce J et al (2005) The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiol Dis 20:799–804CrossRefPubMedGoogle Scholar
  5. 5.
    Bertrand D, Galzi JL, Devillers-Thiéry A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A 90:6971–6975CrossRefPubMedGoogle Scholar
  6. 6.
    Bertrand D, Picard F, Le Hellard S, Weiland S et al (2002) How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia 43(Suppl 5):112–122CrossRefPubMedGoogle Scholar
  7. 7.
    Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D (1998) Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br J Pharmacol 125:751–760CrossRefPubMedGoogle Scholar
  8. 8.
    Bocquet N, Nury H, Baaden M, Le Poupon C et al (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114CrossRefPubMedGoogle Scholar
  9. 9.
    Buisson B, Bertrand D (2001) Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function. J Neurosci 21:1819–1829PubMedGoogle Scholar
  10. 10.
    Buisson B, Gopalakrishnan M, Arneric SP, Sullivan JP, Bertrand D (1996) Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: a patch-clamp study. J Neurosci 16:7880–7891PubMedGoogle Scholar
  11. 11.
    Cho YW, Motamedi GK, Laufenberg I, Sohn SI et al (2003) A Korean kindred with autosomal dominant nocturnal frontal lobe epilepsy and mental retardation. Arch Neurol 60:1625–1632CrossRefPubMedGoogle Scholar
  12. 12.
    Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350:235–238CrossRefPubMedGoogle Scholar
  13. 13.
    Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729CrossRefPubMedGoogle Scholar
  14. 14.
    De Fusco M, Becchetti A, Patrignani A, Annesi G et al (2000) The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 26:275–276CrossRefPubMedGoogle Scholar
  15. 15.
    Figl A, Viseshakul N, Shafaee N, Forsayeth J, Cohen BN (1998) Two mutations linked to nocturnal frontal lobe epilepsy cause use-dependent potentiation of the nicotinic ACh response. J Physiol 513(Pt 3):655–670CrossRefPubMedGoogle Scholar
  16. 16.
    Fonck C, Cohen BN, Nashmi R, Whiteaker P et al (2005) Novel seizure phenotype and sleep disruptions in knock-in mice with hypersensitive alpha 4* nicotinic receptors. J Neurosci 25:11396–11411CrossRefPubMedGoogle Scholar
  17. 17.
    Fonck C, Nashmi R, Deshpande P, Damaj MI et al (2003) Increased sensitivity to agonist-induced seizures, straub tail, and hippocampal theta rhythm in knock-in mice carrying hypersensitive alpha 4 nicotinic receptors. J Neurosci 23:2582–2590PubMedGoogle Scholar
  18. 18.
    Forster I, Bertrand D (1995) Inward rectification of neuronal nicotinic acetylcholine receptors investigated by using the homomeric alpha 7 receptor. Proc Biol Sci 260:139–148CrossRefPubMedGoogle Scholar
  19. 19.
    Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35:1–8CrossRefPubMedGoogle Scholar
  20. 20.
    Fucile S, Sucapane A, Eusebi F (2005) Ca2+ permeability of nicotinic acetylcholine receptors from rat dorsal root ganglion neurones. J Physiol 565:219–228CrossRefPubMedGoogle Scholar
  21. 21.
    Galzi JL, Devillers-Thiéry A, Hussy N, Bertrand S et al (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–505CrossRefPubMedGoogle Scholar
  22. 22.
    Gilbert D, Lecchi M, Arnaudeau S, Bertrand D, Demaurex N (2009) Local and global calcium signals associated with the opening of neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium 45:198–207CrossRefPubMedGoogle Scholar
  23. 23.
    Gopalakrishnan M, Buisson B, Touma E, Giordano T et al (1995) Stable expression and pharmacological properties of the human alpha 7 nicotinic acetylcholine receptor. Eur J Pharmacol 290:237–246CrossRefPubMedGoogle Scholar
  24. 24.
    Han ZY, Le Novère N, Zoli M, Hill JA et al (2000) Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur J NeuroSci 12:3664–3674CrossRefPubMedGoogle Scholar
  25. 25.
    Han ZY, Zoli M, Cardona A, Bourgeois JP et al (2003) Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin binding sites in the brain of Macaca mulatta. J Comp Neurol 461:49–60CrossRefPubMedGoogle Scholar
  26. 26.
    Hilf RJ, Dutzler R (2009) A prokaryotic perspective on pentameric ligand-gated ion channel structure. Curr Opin Struct Biol 19:418–424CrossRefPubMedGoogle Scholar
  27. 27.
    Hirose S, Iwata H, Akiyoshi H, Kobayashi K et al (1999) A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology 53:1749–1753PubMedGoogle Scholar
  28. 28.
    Hoda JC, Gu W, Friedli M, Phillips HA et al (2008) Human nocturnal frontal lobe epilepsy: pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor beta-subunit mutations outside the ion channel pore. Mol Pharmacol 74:379–391CrossRefPubMedGoogle Scholar
  29. 29.
    Hoda JC, Wanischeck M, Bertrand D, Steinlein OK (2009) Pleiotropic functional effects of the first epilepsy-associated mutation in the human CHRNA2 gene. FEBS Lett 583:1599–1604CrossRefPubMedGoogle Scholar
  30. 30.
    Itier V, Bertrand D (2002) Mutations of the neuronal nicotinic acetylcholine receptors and their association with ADNFLE. Neurophysiol Clin 32:99–107CrossRefPubMedGoogle Scholar
  31. 31.
    Klaassen A, Glykys J, Maguire J, Labarca C et al (2006) Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy. Proc Natl Acad Sci U S A 103:19152–19157CrossRefPubMedGoogle Scholar
  32. 32.
    Kuryatov A, Gerzanich V, Nelson M, Olale F, Lindstrom J (1997) Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human alpha4beta2 nicotinic acetylcholine receptors. J Neurosci 17:9035–9047PubMedGoogle Scholar
  33. 33.
    Leniger T, Kananura C, Hufnagel A, Bertrand S et al (2003) A new Chrna4 mutation with low penetrance in nocturnal frontal lobe epilepsy. Epilepsia 44:981–985CrossRefPubMedGoogle Scholar
  34. 34.
    Lipovsek M, Plazas P, Savino J, Klaassen A et al (2008) Properties of mutated murine alpha4beta2 nicotinic receptors linked to partial epilepsy. Neurosci Lett 434:165–169CrossRefPubMedGoogle Scholar
  35. 35.
    Magnusson A, Stordal E, Brodtkorb E, Steinlein O (2003) Schizophrenia, psychotic illness and other psychiatric symptoms in families with autosomal dominant nocturnal frontal lobe epilepsy caused by different mutations. Psychiatr Genet 13:91–95CrossRefPubMedGoogle Scholar
  36. 36.
    Mann EO, Mody I (2008) The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy. Curr Opin Neurol 21:155–160CrossRefPubMedGoogle Scholar
  37. 37.
    McLellan A, Phillips HA, Rittey C, Kirkpatrick M et al (2003) Phenotypic comparison of two Scottish families with mutations in different genes causing autosomal dominant nocturnal frontal lobe epilepsy. Epilepsia 44:613–617CrossRefPubMedGoogle Scholar
  38. 38.
    Moroni M, Bermudez I (2006) Stoichiometry and pharmacology of two human alpha4beta2 nicotinic receptor types. J Mol Neurosci 30:95–96CrossRefPubMedGoogle Scholar
  39. 39.
    Patrick J, Boulter J, Deneris E, Wada K et al (1989) Structure and function of neuronal nicotinic acetylcholine receptors deduced from cDNA clones. Prog Brain Res 79:27–33CrossRefPubMedGoogle Scholar
  40. 40.
    Phillips HA, Favre I, Kirkpatrick M, Zuberi SM et al (2001) CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 68:225–231CrossRefPubMedGoogle Scholar
  41. 41.
    Phillips HA, Marini C, Scheffer IE, Sutherland GR et al (2000) A de novo mutation in sporadic nocturnal frontal lobe epilepsy. Ann Neurol 48:264–267CrossRefPubMedGoogle Scholar
  42. 42.
    Picard F, Bertrand S, Steinlein OK, Bertrand D (1999) Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 40:1198–1209CrossRefPubMedGoogle Scholar
  43. 43.
    Poorthuis RB, Goriounova NA, Couey JJ, Mansvelder HD (2009) Nicotinic actions on neuronal networks for cognition: general principles and long-term consequences. Biochem Pharmacol 78:668–676CrossRefPubMedGoogle Scholar
  44. 44.
    Revah F, Bertrand D, Galzi JL, Devillers-Thiéry A et al (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849CrossRefPubMedGoogle Scholar
  45. 45.
    Sands SB, Barish ME (1991) Calcium permeability of neuronal nicotinic acetylcholine receptor channels in PC12 cells. Brain Res 560:38–42CrossRefPubMedGoogle Scholar
  46. 46.
    Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604PubMedGoogle Scholar
  47. 47.
    Steinlein OK, Bertrand D (2008) Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. Biochem Pharmacol 76:1175–1183CrossRefPubMedGoogle Scholar
  48. 48.
    Steinlein OK, Magnusson A, Stoodt J, Bertrand S et al (1997) An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 6:943–947CrossRefPubMedGoogle Scholar
  49. 49.
    Steinlein OK, Mulley JC, Propping P, Wallace RH et al (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11:201–203CrossRefPubMedGoogle Scholar
  50. 50.
    Taly A, Changeux JP (2008) Functional organization and conformational dynamics of the nicotinic receptor: a plausible structural interpretation of myasthenic mutations. Ann N Y Acad Sci 1132:42–52CrossRefPubMedGoogle Scholar
  51. 51.
    Teper Y, Whyte D, Cahir E, Lester HA et al (2007) Nicotine-induced dystonic arousal complex in a mouse line harboring a human autosomal-dominant nocturnal frontal lobe epilepsy mutation. J Neurosci 27:10128–10142CrossRefPubMedGoogle Scholar
  52. 52.
    Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989CrossRefPubMedGoogle Scholar
  53. 53.
    Weiland S, Witzemann V, Villarroel A, Propping P, Steinlein O (1996) An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS Lett 398:91–96CrossRefPubMedGoogle Scholar
  54. 54.
    Williams BM, Temburni MK, Levey MS, Bertrand S et al (1998) The long internal loop of the alpha 3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat Neurosci 1:557–562CrossRefPubMedGoogle Scholar
  55. 55.
    Xu J, Zhu Y, Heinemann SF (2006) Identification of sequence motifs that target neuronal nicotinic receptors to dendrites and axons. J Neurosci 26:9780–9793CrossRefPubMedGoogle Scholar
  56. 56.
    Zhou Y, Nelson ME, Kuryatov A, Choi C et al (2003) Human alpha4beta2 acetylcholine receptors formed from linked subunits. J Neurosci 23:9004–9015PubMedGoogle Scholar
  57. 57.
    Zhu G, Okada M, Yoshida S, Ueno S et al (2008) Rats harboring S284L Chrna4 mutation show attenuation of synaptic and extrasynaptic GABAergic transmission and exhibit the nocturnal frontal lobe epilepsy phenotype. J Neurosci 28:12465–12476CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of Human Genetics, University HospitalLudwig Maximilians UniversityMunichGermany
  2. 2.Department of Neuroscience, Medical FacultyUniversity of GenevaGenevaSwitzerland

Personalised recommendations