Cellular signaling and NO production

Signaling and Cell Physiology


The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor is nitric oxide (NO), which is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelium-dependent relaxations involve both pertussis-toxin-sensitive Gi (e.g., responses to serotonin, sphingosine 1-phosphate, alpha2-adrenergic agonists, and thrombin) and pertussis-toxin-insensitive Gq (e.g., adenosine diphosphate and bradykinin) coupling proteins. eNOS undergoes a complex pattern of intracellular regulation, including post-translational modifications involving enzyme acylation and phosphorylation. eNOS is reversibly targeted to signal-transducing plasmalemmal caveolae where the enzyme interacts with a number of regulatory proteins, many of which are modified in cardiovascular disease states. The release of nitric oxide by the endothelial cell can be up- (e.g., by estrogens, exercise, and dietary factors) and down-regulated (e.g. oxidative stress, smoking, and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g., diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis-toxin-sensitive pathway for NO release which favors vasospasm, thrombosis, penetration of macrophages, cellular growth, and the inflammatory reaction leading to atherosclerosis. The unraveling of the complex interaction of the pathways regulating the presence and the activity of eNOS will enhance the understanding of the perturbations in endothelium-dependent signaling that are seen in cardiovascular disease states, and may lead to the identification of novel targets for therapeutic intervention.


Diabetes G-proteins Hypertension Nitric oxide Nitric oxide synthase Caveola Endothelium-derived relaxing factor (EDRF) Phosphorylation 


  1. 1.
    Aikawa M, Libby P (2004) The vulnerable atherosclerotic plaque pathogenesis and therapeutic approach. Cardiovasc Path 13:125–138CrossRefGoogle Scholar
  2. 2.
    Balligand JL, Feron O et al (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89(2):481–534CrossRefPubMedGoogle Scholar
  3. 3.
    Berka V, Wu G, Yeh HC et al (2004) Three different oxygen-induced radical species in endothelial nitric-oxide synthase oxygenase domain under regulation by L-arginine and tetrahydrobiopterin. J Biol Chem 279:32243–32251CrossRefPubMedGoogle Scholar
  4. 4.
    Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380CrossRefPubMedGoogle Scholar
  5. 5.
    Busse R, Fleming I (2003) Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci 24:24–29CrossRefPubMedGoogle Scholar
  6. 6.
    Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68(1):26–36CrossRefPubMedGoogle Scholar
  7. 7.
    Cai H, Griendling KK et al (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24(9):471–478CrossRefPubMedGoogle Scholar
  8. 8.
    Chen Z, Peng IC et al (2009) AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res 104(4):496–505CrossRefPubMedGoogle Scholar
  9. 9.
    Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560PubMedGoogle Scholar
  10. 10.
    De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974CrossRefPubMedGoogle Scholar
  11. 11.
    Deanfield JE, Halcox JP et al (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295PubMedGoogle Scholar
  12. 12.
    Dudzinski DM, Michel T (2007) Life history of eNOS: partners and pathways. Cardiovasc Res 75(2):247–260CrossRefPubMedGoogle Scholar
  13. 13.
    Dudzinski DM, Igarashi J et al (2006) The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46:235–276CrossRefPubMedGoogle Scholar
  14. 14.
    Erwin PA, Lin AJ et al (2005) Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem 280(20):19888–19894CrossRefPubMedGoogle Scholar
  15. 15.
    Erwin PA, Mitchell DA et al (2006) Subcellular targeting and differential S-nitrosylation of endothelial nitric-oxide synthase. J Biol Chem 281(1):151–157CrossRefPubMedGoogle Scholar
  16. 16.
    Félétou M, Vanhoutte PM (2006) EDHF: the complete story. CRC Taylor and Francis, Boca Raton, pp 1–298Google Scholar
  17. 17.
    Félétou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291:H985–H1002CrossRefPubMedGoogle Scholar
  18. 18.
    Félétou M, Vanhoutte PM (2009) EDHF: an update. Clin Sci 117(4):139–55Google Scholar
  19. 19.
    Feron O, Balligand JL (2006) Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 69(4):788–797CrossRefPubMedGoogle Scholar
  20. 20.
    Feron O, Saldana F et al (1998) The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem 273(6):3125–3128CrossRefPubMedGoogle Scholar
  21. 21.
    Fisslthaler B, Loot AE, Mohamed A, Busse R, Fleming I (2008) Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin. Circ Res 102:1520–1528CrossRefPubMedGoogle Scholar
  22. 22.
    Fisslthaler B, Fleming I (2009) Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105(2):114–127CrossRefPubMedGoogle Scholar
  23. 23.
    Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12PubMedGoogle Scholar
  24. 24.
    Forstermann U, Boissel J-P, Kleinert J (1998) Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase. FASEB J 12:773–790PubMedGoogle Scholar
  25. 25.
    Fulton D, Church JE et al (2005) Src kinase activates endothelial nitric-oxide synthase by phosphorylating Tyr-83. J Biol Chem 280(43):35943–35952CrossRefPubMedGoogle Scholar
  26. 26.
    Fulton D, Gratton JP et al (2001) Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough? J Pharmacol Exp Ther 299(3):818–824PubMedGoogle Scholar
  27. 27.
    Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2017PubMedGoogle Scholar
  28. 28.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376CrossRefPubMedGoogle Scholar
  29. 29.
    Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev 7:489–503CrossRefGoogle Scholar
  30. 30.
    Gonzalez E, Nagiel A et al (2004) Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J Biol Chem 279(39):40659–40669CrossRefPubMedGoogle Scholar
  31. 31.
    Govers R, Rabelink TJ (2001) Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol 280(2):F193–F206PubMedGoogle Scholar
  32. 32.
    Gratton JP, Bernatchez P et al (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94(11):1408–1417CrossRefPubMedGoogle Scholar
  33. 33.
    Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100(9):2153–2157CrossRefPubMedGoogle Scholar
  34. 34.
    Hess DT, Matsumoto A et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166CrossRefPubMedGoogle Scholar
  35. 35.
    Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M et al (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88(2):E14–E22PubMedGoogle Scholar
  36. 36.
    Hla T, Lee MJ et al (2001) Lysophospholipids–receptor revelations. Science 294(5548):1875–1878CrossRefPubMedGoogle Scholar
  37. 37.
    Icking A, Matt S et al (2005) NOSTRIN functions as a homotrimeric adaptor protein facilitating internalization of eNOS. J Cell Sci 118(Pt 21):5059–5069CrossRefPubMedGoogle Scholar
  38. 38.
    Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4(12):977–987CrossRefPubMedGoogle Scholar
  39. 39.
    Katusic ZS (2001) Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am J Physiol Heart Circ Physiol 281(3):H981–H986PubMedGoogle Scholar
  40. 40.
    Katusic ZS, d'Uscio LV et al (2009) Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects. Trends Pharmacol Sci 30(1):48–54CrossRefPubMedGoogle Scholar
  41. 41.
    Katusic ZS (2007) Mechanisms of endothelial dysfunction induced by aging: role of arginase I. Circ Res 101:640–641CrossRefPubMedGoogle Scholar
  42. 42.
    Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571CrossRefPubMedGoogle Scholar
  43. 43.
    Konig P, Dedio J et al (2005) NOSIP and its interacting protein, eNOS, in the rat trachea and lung. J Histochem Cytochem 53(2):155–164CrossRefPubMedGoogle Scholar
  44. 44.
    Lee MYK, Tse HF, Siu CW, Zhu SG, Man RYK, Vanhoutte PM (2007) Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscler Thromb Vasc Biol 27:2443–2449CrossRefPubMedGoogle Scholar
  45. 45.
    Levine YC, Li GK et al (2007) Agonist-modulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells. Evidence for an AMPK -> Rac1 -> Akt -> endothelial nitric-oxide synthase pathway. J Biol Chem 282(28):20351–20364CrossRefPubMedGoogle Scholar
  46. 46.
    Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287(5):R1014–R1030PubMedGoogle Scholar
  47. 47.
    Li PL, Gulbins E (2007) Lipid rafts and redox signaling. Antioxid Redox Signal 9(9):1411–1415CrossRefPubMedGoogle Scholar
  48. 48.
    Loscalzo J, Welch G (1995) Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis 38(2):87–104CrossRefPubMedGoogle Scholar
  49. 49.
    Lubos E, Handy DE et al (2008) Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci 13:5323–5344CrossRefPubMedGoogle Scholar
  50. 50.
    Lüscher TF, Vanhoutte PM (1990) The endothelium: modulator of cardiovascular function. CRC, Boca Raton, pp 1–228Google Scholar
  51. 51.
    Martinez-Ruiz A, Villanueva L et al (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci USA 102:8525–8530CrossRefPubMedGoogle Scholar
  52. 52.
    Miller VM, Duckles SP (2008) Vascular actions of estrogens: functional implications. Pharmacol Rev 60:210–241CrossRefPubMedGoogle Scholar
  53. 53.
    Miller VM, Vanhoutte PM (1988) Enhanced release of endothelium-derived factors by chronic increases in blood flow. Am J Physiol 255:H446–H451PubMedGoogle Scholar
  54. 54.
    Miller VM, Vanhoutte PM (1991) Progesterone and modulation of endothelium-dependent responses in canine coronary arteries. Am J Physiol 261:R1022–R1027PubMedGoogle Scholar
  55. 55.
    Moens AL, Kass DA (2006) Tetrahydrobiopterin and cardiovascular disease. Arterioscler Thromb Vasc Biol 26(11):2439–2444CrossRefPubMedGoogle Scholar
  56. 56.
    Moncada S (1997) Nitric oxide in the vasculature: physiology and pathophysiology. Ann N Y Acad Sci 811:60–67CrossRefPubMedGoogle Scholar
  57. 57.
    Radi R (2004) Nitric oxide, oxidations, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008CrossRefPubMedGoogle Scholar
  58. 58.
    Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor(s). Am J Physiol 250:H822–H827PubMedGoogle Scholar
  59. 59.
    Rubanyi GM, Lorenz RR, Vanhoutte PM (1985) Bioassay of endothelium-derived relaxing factor(s). Inactivation by catecholamines. Am J Physiol 249:H95–H101PubMedGoogle Scholar
  60. 60.
    Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149PubMedGoogle Scholar
  61. 61.
    Schilling K, Opitz N et al (2006) Translocation of endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Mol Biol Cell 17(9):3870–3880CrossRefPubMedGoogle Scholar
  62. 62.
    Schroder E, Eaton P (2008) Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: issues and considerations. Curr Opin Pharmacol 8(2):153–159CrossRefPubMedGoogle Scholar
  63. 63.
    Sessa WC (2004) eNOS at a glance. J Cell Sci 117(Pt 12):2427–2429CrossRefPubMedGoogle Scholar
  64. 64.
    Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774CrossRefPubMedGoogle Scholar
  65. 65.
    Shaul PW (2003) Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol 547(Pt 1):21–33CrossRefPubMedGoogle Scholar
  66. 66.
    Skidgel RA (2002) Proliferation of regulatory mechanisms for eNOS: an emerging role for the cytoskeleton. Am J Physiol Lung Cell Mol Physiol 282(6):L1179–L1182PubMedGoogle Scholar
  67. 67.
    Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106:675–683CrossRefPubMedGoogle Scholar
  68. 68.
    Steuhr DJ (1997) Structure-function aspects in the nitric oxide synthases. Ann Rev Pharmacol Toxicol 37:339–359CrossRefGoogle Scholar
  69. 69.
    Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478CrossRefPubMedGoogle Scholar
  70. 70.
    Su Y, Edwards-Bennett S et al (2003) Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am J Physiol Cell Physiol 284(6):C1542–C1549PubMedGoogle Scholar
  71. 71.
    Thomas SR, Witting PK et al (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10(10):1713–1765CrossRefPubMedGoogle Scholar
  72. 72.
    Vanhoutte PM (2008) Arginine and arginase: eNOS double crossed? Circ Res 102:866–868CrossRefPubMedGoogle Scholar
  73. 73.
    Vanhoutte PM, Tang EHC (2008) Endothelium-dependent contractions: when a good guy turns bad. J Physiol 586:5295–5303CrossRefPubMedGoogle Scholar
  74. 74.
    Vanhoutte PM (2009) How we learned to say NO. Arterioscl Thromb Vasc Biol 29:1156–1160CrossRefPubMedGoogle Scholar
  75. 75.
    Vanhoutte PM, Félétou M, Taddei S (2005) Endothelium-dependent contractions in hypertension. Br J Pharmacol 144:449–458CrossRefPubMedGoogle Scholar
  76. 76.
    Vanhoutte PM, Shimokawa H, Tang EHC, Félétou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol 196:193–222CrossRefGoogle Scholar
  77. 77.
    Wolin MS (2009) Reactive oxygen species and the control of vascular function. Am J Physiol Heart Circ Physiol 296(3):H539–H549CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  2. 2.Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina

Personalised recommendations