Altered myoplasmic Ca2+ handling in rat fast-twitch skeletal muscle fibres during disuse atrophy

  • Norbert Weiss
  • Tina Andrianjafiniony
  • Sylvie Dupré-Aucouturier
  • Sandrine Pouvreau
  • Dominique Desplanches
  • Vincent JacquemondEmail author
Muscle Physiology


Calcium-dependent signalling pathways are believed to play an important role in skeletal muscle atrophy, but whether intracellular Ca2+ homeostasis is affected in that situation remains obscure. We show here that there is a 20% atrophy of the fast-type flexor digitorum brevis (FDB) muscle in rats hind limb unloaded (HU) for 2 weeks, with no change in fibre type distribution. In voltage-clamp experiments, the amplitude of the slow Ca2+ current was found similar in fibres from control and HU animals. In fibres loaded with the Ca2+ dye indo-1, the value for the rate of [Ca2+] decay after the end of 5–100-ms-long voltage-clamp depolarisations from −80 to +10 mV was found to be 30–50% lower in fibres from HU animals. This effect was consistent with a reduced contribution of both saturable and non-saturable components of myoplasmic Ca2+ removal. However, there was no change in the relative amount of parvalbumin, and type 1 sarco-endoplasmic reticulum Ca2+-ATPase was increased by a factor of three in the atrophied muscles. Confocal imaging of mitochondrial membrane potential showed that atrophied FDB fibres had significantly depolarized mitochondria as compared to control fibres. Depolarization of mitochondria in control fibres with carbonyl cyanide-p-trifluoromethoxyphenylhydrazone induced a slowing of the decay of [Ca2+] transients accompanied by an increase in resting [Ca2+] and a reduction of the peak amplitude of the transients. Overall results provide the first functional evidence for severely altered intracellular Ca2+ removal capabilities in atrophied fast-type muscle fibres and highlight the possible contribution of reduced mitochondrial polarisation.


Sarcoplasmic reticulum Ca2+ release Myoplasmic calcium removal Skeletal muscle Skeletal muscle fibre Excitation-contraction coupling Calcium release Calcium removal Ryanodine receptor Calcium ATPase Calcium buffer Voltage clamp Muscle plasticity Rat 



This work was supported by grants from Centre National de la Recherche Scientifique (CNRS), University Lyon 1 and Centre National d'Etudes Spatiales (CNES).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37CrossRefPubMedGoogle Scholar
  2. 2.
    Bastide B, Conti A, Sorrentino V, Mounier Y (2000) Properties of ryanodine receptor in rat muscles submitted to unloaded conditions. Biochem Biophys Res Commun 270:442–447CrossRefPubMedGoogle Scholar
  3. 3.
    Baylor SM, Hollingworth S (1988) Fura-2 calcium transients in frog skeletal muscle fibres. J Physiol 403:151–192PubMedGoogle Scholar
  4. 4.
    Baylor SM, Hollingworth S (1998) Model of sarcomeric Ca2+ movements, including ATP Ca2+ binding and diffusion, during activation of frog skeletal muscle. J Gen Physiol 112:297–316CrossRefPubMedGoogle Scholar
  5. 5.
    Baylor SM, Hollingworth S (2003) Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J Physiol 551:125–138CrossRefPubMedGoogle Scholar
  6. 6.
    Baylor SM, Hollingworth S (2007) Simulation of Ca2+ movements within the sarcomere of fast-twitch mouse fibers stimulated by action potentials. J Gen Physiol 130:283–302CrossRefPubMedGoogle Scholar
  7. 7.
    Bolaños P, Guillen A, Rojas H, Boncompagni S, Caputo C (2008) The use of CalciumOrange-5 N as a specific marker of mitochondrial Ca2+ in mouse skeletal muscle fibers. Pflugers Arch 455:721–731CrossRefPubMedGoogle Scholar
  8. 8.
    Boncompagni S, Rossi AE, Micaroni M, Beznoussenko GV, Polishchuk RS, Dirksen RT, Protasi F (2009) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20:1058–1067CrossRefPubMedGoogle Scholar
  9. 9.
    Brennan JP, Berry RG, Baghai M, Duchen MR, Shattock MJ (2006) FCCP is cardioprotective at concentrations that cause mitochondrial oxidation without detectable depolarisation. Cardiovasc Res 72:322–330CrossRefPubMedGoogle Scholar
  10. 10.
    Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379PubMedGoogle Scholar
  11. 11.
    Bruton J, Tavi P, Aydin J, Westerblad H, Lannergren J (2003) Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. J Physiol 551:179–190CrossRefPubMedGoogle Scholar
  12. 12.
    Caputo C, Bolaños P (2008) Effect of mitochondria poisoning by FCCP on Ca2+ signaling in mouse skeletal muscle fibers. Pflugers Arch 455:733–743CrossRefPubMedGoogle Scholar
  13. 13.
    Carroll SL, Klein MG, Schneider MF (1997) Decay of calcium transients after electrical stimulation in rat fast- and slow-twitch skeletal muscle fibres. J Physiol 501:573–588CrossRefPubMedGoogle Scholar
  14. 14.
    Chin ER (2005) Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 99:414–423CrossRefPubMedGoogle Scholar
  15. 15.
    Costelli P, Reffo P, Penna F, Autelli R, Bonelli G, Baccino FM (2005) Ca2+-dependent proteolysis in muscle wasting. Int J Biochem Cell Biol 37:2134–2146CrossRefPubMedGoogle Scholar
  16. 16.
    Dargelos E, Poussard S, Brule C, Daury L, Cottin P (2008) Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie 90:359–368CrossRefPubMedGoogle Scholar
  17. 17.
    Denjean F, Desplanches D, Lachuer J, Cohen-Adad F, Mayet MH, Duchamp C (1999) Muscle-specific up-regulation of rat UCP3 mRNA expression by long-term hindlimb unloading. Biochem Biophys Res Commun 266:518–522CrossRefPubMedGoogle Scholar
  18. 18.
    Desplanches D, Kayar SR, Sempore B, Flandrois R, Hoppeler H (1990) Rat soleus muscle ultrastructure after hindlimb suspension. J Appl Physiol 69:504–508PubMedGoogle Scholar
  19. 19.
    Desplanches D, Mayet MH, Sempore B, Flandrois R (1987) Structural and functional responses to prolonged hindlimb suspension in rat muscle. J Appl Physiol 63:558–563PubMedGoogle Scholar
  20. 20.
    Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:333–339CrossRefPubMedGoogle Scholar
  21. 21.
    Fluck M (2006) Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 209:2239–2248CrossRefPubMedGoogle Scholar
  22. 22.
    Fraysse B, Desaphy JF, Pierno S, De Luca A, Liantonio A, Mitolo CI, Camerino DC (2003) Decrease in resting calcium and calcium entry associated with slow-to-fast transition in unloaded rat soleus muscle. FASEB J 17:1916–1918PubMedGoogle Scholar
  23. 23.
    Garcia J, Schneider MF (1993) Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres. J Physiol 463:709–728PubMedGoogle Scholar
  24. 24.
    Gillis JM (1997) Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles. J Muscle Res Cell Motil 18:473–483CrossRefPubMedGoogle Scholar
  25. 25.
    Harridge SD (2007) Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol 92:783–797CrossRefPubMedGoogle Scholar
  26. 26.
    Heizmann CW, Berchtold MW, Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proc Natl Acad Sci U S A 79:7243–7247CrossRefPubMedGoogle Scholar
  27. 27.
    Ingalls CP, Warren GL, Armstrong RB (1999) Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading. J Appl Physiol 87:386–390PubMedGoogle Scholar
  28. 28.
    Isaeva EV, Shirokova N (2003) Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol 547:453–462CrossRefPubMedGoogle Scholar
  29. 29.
    Isaeva EV, Shkryl VM, Shirokova N (2005) Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol 565:855–872CrossRefPubMedGoogle Scholar
  30. 30.
    Ishibashi T, Lee CI, Okabe E (1996) Skeletal sarcoplasmic reticulum dysfunction induced by reactive oxygen intermediates derived from photoactivated rose bengal. J Pharmacol Exp Ther 277:350–358PubMedGoogle Scholar
  31. 31.
    Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol 287:C834–C843CrossRefGoogle Scholar
  32. 32.
    Jacquemond V (1997) Indo-1 fluorescence signals elicited by membrane depolarization in enzymatically isolated mouse skeletal muscle fibers. Biophys J 73:920–928CrossRefPubMedGoogle Scholar
  33. 33.
    Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG (2007) ‘Mild uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem 101:1619–1631CrossRefPubMedGoogle Scholar
  34. 34.
    Kaasik A, Veksler V, Boehm E, Novotova M, Ventura-Clapier R (2003) From energy store to energy flux: a study in creatine kinase-deficient fast skeletal muscle. FASEB J 17:708–710PubMedGoogle Scholar
  35. 35.
    Kandarian S, O'Brien S, Thomas K, Schulte L, Navarro J (1992) Regulation of skeletal muscle dihydropyridine receptor gene expression by biomechanical unloading. J Appl Physiol 72:2510–2514PubMedGoogle Scholar
  36. 36.
    Kandarian SC, Peters DG, Favero TG, Ward CW, Williams JH (1996) Adaptation of the skeletal muscle calcium-release mechanism to weight-bearing condition. Am J Physiol 270:C1588–C1594PubMedGoogle Scholar
  37. 37.
    Koopman WJ, Renders M, Oosterhof A, van Kuppevelt TH, van Engelen BG, Willems PH (2003) Upregulation of Ca2+ removal in human skeletal muscle: a possible role for Ca2+-dependent priming of mitochondrial ATP synthesis. Am J Physiol 285:C1263–C1269Google Scholar
  38. 38.
    Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9–16CrossRefPubMedGoogle Scholar
  39. 39.
    Liu Y, Shen T, Randall WR, Schneider MF (2005) Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 26:13–21CrossRefPubMedGoogle Scholar
  40. 40.
    Melzer W, Rios E, Schneider MF (1986) The removal of myoplasmic free calcium following calcium release in frog skeletal muscle. J Physiol 372:261–292PubMedGoogle Scholar
  41. 41.
    Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92:1367–1377CrossRefPubMedGoogle Scholar
  42. 42.
    Mu X, Brown LD, Liu Y, Schneider MF (2007) Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Physiol Genomics 30:300–312CrossRefPubMedGoogle Scholar
  43. 43.
    Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H (2007) Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol 293:R1159–R1168Google Scholar
  44. 44.
    Pouvreau S, Allard B, Berthier C, Jacquemond V (2004) Control of intracellular calcium in the presence of nitric oxide donors in isolated skeletal muscle fibres from mouse. J Physiol 560:779–794CrossRefPubMedGoogle Scholar
  45. 45.
    Pereon Y, Sorrentino V, Dettbarn C, Noireaud J, Palade P (1997) Dihydropyridine receptor and ryanodine receptor gene expression in long-term denervated rat muscles. Biochem Biophys Res Commun 240:612–617CrossRefPubMedGoogle Scholar
  46. 46.
    Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol 288:R337–R344Google Scholar
  47. 47.
    Radzyukevich TL, Heiny JA (2004) Regulation of dihydropyridine receptor gene expression in mouse skeletal muscles by stretch and disuse. Am J Physiol 287:C1445–C1452CrossRefGoogle Scholar
  48. 48.
    Raymackers JM, Gailly P, Schoor MC, Pette D, Schwaller B, Hunziker W, Celio MR, Gillis JM (2000) Tetanus relaxation of fast skeletal muscles of the mouse made parvalbumin deficient by gene inactivation. J Physiol 527:355–364CrossRefPubMedGoogle Scholar
  49. 49.
    Rivero JL, Talmadge RJ, Edgerton VR (1998) Fibre size and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle. J Muscle Res Cell Motil 19:733–742CrossRefPubMedGoogle Scholar
  50. 50.
    Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T (2004) In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536CrossRefPubMedGoogle Scholar
  51. 51.
    Scherer NM, Deamer DW (1986) Oxidation of thiols in the Ca2+-ATPase of sarcoplasmic reticulum microsomes. Biochim Biophys Acta 862:309–317CrossRefPubMedGoogle Scholar
  52. 52.
    Schmitt TL, Pette D (1991) Fiber type-specific distribution of parvalbumin in rabbit skeletal muscle. A quantitative microbiochemical and immunohistochemical study. Histochemistry 96:459–465CrossRefPubMedGoogle Scholar
  53. 53.
    Schulte LM, Navarro J, Kandarian SC (1993) Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. Am J Physiol 264:C1308–C1315PubMedGoogle Scholar
  54. 54.
    Servais S, Letexier D, Favier R, Duchamp C, Desplanches D (2007) Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis? Free Radic Biol Med 42:627–635CrossRefPubMedGoogle Scholar
  55. 55.
    Shkryl VM, Shirokova N (2006) Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem 281:1547–1554CrossRefPubMedGoogle Scholar
  56. 56.
    Siu PM, Pistilli EE, Alway SE (2008) Age-dependent increase in oxidative stress in gastrocnemius muscle with unloading. J Appl Physiol 105:1695–1705CrossRefPubMedGoogle Scholar
  57. 57.
    Stevens L, Mounier Y (1992) Ca2+ movements in sarcoplasmic reticulum of rat soleus fibers after hindlimb suspension. J Appl Physiol 72:1735–1740PubMedGoogle Scholar
  58. 58.
    Tidball JG, Spencer MJ (2002) Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 545:819–828CrossRefPubMedGoogle Scholar
  59. 59.
    Tischler ME, Rosenberg S, Satarug S, Henriksen EJ, Kirby CR, Tome M, Chase P (1990) Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 39:756–763CrossRefPubMedGoogle Scholar
  60. 60.
    Viner RI, Ferrington DA, Aced GI, Miller-Schlyer M, Bigelow DJ, Schoneich C (1997) In vivo aging of rat skeletal muscle sarcoplasmic reticulum Ca-ATPase. Chemical analysis and quantitative simulation by exposure to low levels of peroxyl radicals. Biochim Biophys Acta 1329:321–335CrossRefPubMedGoogle Scholar
  61. 61.
    West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, Shaywitz AJ, Takasu MA, Tao X, Greenberg ME (2001) Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 98:11024–11031CrossRefPubMedGoogle Scholar
  62. 62.
    Xu KY, Zweier JL, Becker LC (1997) Hydroxyl radical inhibits sarcoplasmic reticulum Ca2+-ATPase function by direct attack on the ATP binding site. Circ Res 80:76–81PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Norbert Weiss
    • 1
  • Tina Andrianjafiniony
    • 1
  • Sylvie Dupré-Aucouturier
    • 1
  • Sandrine Pouvreau
    • 1
  • Dominique Desplanches
    • 1
  • Vincent Jacquemond
    • 1
    Email author
  1. 1.Physiologie Intégrative Cellulaire et MoléculaireUniversité Lyon 1, UMR CNRS 5123VilleurbanneFrance

Personalised recommendations