Pflügers Archiv - European Journal of Physiology

, Volume 459, Issue 3, pp 475–483 | Cite as

EMD 57033 partially reverses ventilator-induced diaphragm muscle fibre calcium desensitisation

  • Julien OchalaEmail author
  • Peter J. Radell
  • Lars I. Eriksson
  • Lars Larsson
Signaling and Cell Physiology


In critically ill patients, ventilator-induced diaphragm muscle fibre dysfunction (VIDD) contributes to weaning problems, increasing hospitalisation time and related costs. VIDD pathophysiology remains partially unknown, especially the characterisation of the contractile dysfunction. In the present study, it was hypothesised that Ca2+ activation is affected during VIDD. Ca2+ sensitivity of contraction was therefore evaluated at the single skinned diaphragm muscle fibre level in piglets randomised into sham operation or 5-day mechanical ventilation. Ca2+ sensitivities of force and stiffness in fibres were significantly impaired in all mechanically ventilated piglets compared with sham-operated controls, suggesting a less efficient Ca2+ activation of cells, i.e. a lower relative number of strongly attached cross-bridges for each sub-maximal concentration of Ca2+. In an attempt to test whether this negative effect of VIDD is reversible, single muscle fibres were exposed to the EMD 57033 Ca2+ sensitiser. EMD 57033 (30 µM) improved the Ca2+ sensitivity of force and stiffness in fibres from animals that were mechanically ventilated for 5 days as well as in sham-operated piglets. Thus, EMD 57033 partly restored the Ca2+ activation of cells, reducing VIDD. This finding offers a strong basis for evaluating the effect of Ca2+ sensitisers on diaphragm function in vivo.


Mechanical ventilation Diaphragm muscle Porcine model Skinned fibre Ca2+ activation Ca2+ sensitizer 



This study was supported by grants from the Swedish Institute and Association Française contre les Myopathies to J.O. and from the Swedish Research Council (08651), Association Française contre les Myopathies, Cancer Foundation and National Institutes of Health (AR045627, AR047318) to L.L. EMD 57033 was a gift from Dr. Norbert Beier from Merck KGaA, Darmstadt, Germany. We are grateful to Yvette Hedström and Ann-Marie Gustafsson for excellent technical assistance.


  1. 1.
    Barclay CJ, Woledge RC, Curtin NA (2007) Energy turnover for Ca2+ cycling in skeletal muscle. J Muscle Res Cell Motil 28:259–274CrossRefPubMedGoogle Scholar
  2. 2.
    Bouhemad B, Langeron O, Orliaguet G, Coriat P, Riou B (2002) Effects of halothane and isoflurane on the contraction, relaxation and energetics of rat diaphragmatic muscle. Br J Anaesth 89:479–485CrossRefPubMedGoogle Scholar
  3. 3.
    Endoh M (2008) Cardiac ca(2+) signaling and ca(2+) sensitizers. Circ J 72:1915–1925CrossRefPubMedGoogle Scholar
  4. 4.
    Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwaser R, Soto L, Bugedo G, Rodrigo C, Pimentel J, Raimondi G, Tobin MJ (2000) How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 161:1450–1458PubMedGoogle Scholar
  5. 5.
    Esteban A, Frutos F, Tobin MJ, Alia I, Solsona JF, Valverdu I, Fernandez R, de la Cal MA, Benito S, Tomas R et al (1995) A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med 332:345–350CrossRefPubMedGoogle Scholar
  6. 6.
    Fabiato A (1988) Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol 157:378–417CrossRefPubMedGoogle Scholar
  7. 7.
    Frontera WR, Larsson L (1997) Contractile studies of single human skeletal muscle fibers: a comparison of different muscles, permeabilization procedures, and storage techniques. Muscle Nerve 20:948–952CrossRefPubMedGoogle Scholar
  8. 8.
    Galler S, Hilber K (1998) Tension/stiffness ratio of skinned rat skeletal muscle fibre types at various temperatures. Acta Physiol Scand 162:119–126CrossRefPubMedGoogle Scholar
  9. 9.
    Higuchi H, Yanagida T, Goldman YE (1995) Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys J 69:1000–1010CrossRefPubMedGoogle Scholar
  10. 10.
    Huxley AF (1971) The activation of striated muscle and its mechanical response. Proc R Soc Lond B Biol Sci 178:1–27CrossRefPubMedGoogle Scholar
  11. 11.
    Jubran A (2006) Critical illness and mechanical ventilation: effects on the diaphragm. Respir Care 51:1054–1061 discussion 1062-1054PubMedGoogle Scholar
  12. 12.
    Kass DA, Solaro RJ (2006) Mechanisms and use of calcium-sensitizing agents in the failing heart. Circulation 113:305–315CrossRefPubMedGoogle Scholar
  13. 13.
    Kraft T, Brenner B (1997) Force enhancement without changes in cross-bridge turnover kinetics: the effect of EMD 57033. Biophys J 72:272–281CrossRefPubMedGoogle Scholar
  14. 14.
    Lamb GD, Posterino GS (2003) Effects of oxidation and reduction on contractile function in skeletal muscle fibres of the rat. J Physiol 546:149–163CrossRefPubMedGoogle Scholar
  15. 15.
    Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 472:595–614PubMedGoogle Scholar
  16. 16.
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefPubMedGoogle Scholar
  17. 17.
    Li MX, Spyracopoulos L, Beier N, Putkey JA, Sykes BD (2000) Interaction of cardiac troponin C with Ca(2+) sensitizer EMD 57033 and cardiac troponin I inhibitory peptide. Biochemistry 39:8782–8790CrossRefPubMedGoogle Scholar
  18. 18.
    Lipscomb S, Preston LC, Robinson P, Redwood CS, Mulligan IP, Ashley CC (2005) Effects of troponin C isoform on the action of the cardiotonic agent EMD 57033. Biochem J 388:905–912CrossRefPubMedGoogle Scholar
  19. 19.
    Martin AF (1981) Turnover of cardiac troponin subunits. Kinetic evidence for a precursor pool of troponin-I. J Biol Chem 256:964–968PubMedGoogle Scholar
  20. 20.
    Martyn DA, Smith L, Kreutziger KL, Xu S, Yu LC, Regnier M (2007) The effects of force inhibition by sodium vanadate on cross-bridge binding, force redevelopment, and Ca2+ activation in cardiac muscle. Biophys J 92:4379–4390CrossRefPubMedGoogle Scholar
  21. 21.
    McDonald KS, Fitts RH (1995) Effect of hindlimb unloading on rat soleus fiber force, stiffness, and calcium sensitivity. J Appl Physiol 79:1796–1802PubMedGoogle Scholar
  22. 22.
    Moss RL (1979) Sarcomere length-tension relations of frog skinned muscle fibres during calcium activation at short lengths. J Physiol 292:177–192PubMedGoogle Scholar
  23. 23.
    Mounier Y, Tiffreau V, Montel V, Bastide B, Stevens L (2009) Phenotypical transitions and Ca2+ activation properties in human muscle fibers: effects of a 60-day bed rest and countermeasures. J Appl Physiol 106:1086–1099CrossRefPubMedGoogle Scholar
  24. 24.
    Nishina K, Mikawa K, Kodama S, Kagawa T, Uesugi T, Obara H (2003) The effects of enflurane, isoflurane, and intravenous anesthetics on rat diaphragmatic function and fatigability. Anesth Analg 96:1674–1678 table of contentsCrossRefPubMedGoogle Scholar
  25. 25.
    Norman H, Kandala K, Kolluri R, Zackrisson H, Nordquist J, Walther S, Eriksson LI, Larsson L (2006) A porcine model of acute quadriplegic myopathy: a feasibility study. Acta Anaesthesiol Scand 50:1058–1067CrossRefPubMedGoogle Scholar
  26. 26.
    Ochala J, Larsson L (2008) Effects of a preferential myosin loss on Ca2+ activation of force generation in single human skeletal muscle fibres. Exp Physiol 93:486–495CrossRefPubMedGoogle Scholar
  27. 27.
    Ochala J, Li M, Ohlsson M, Oldfors A, Larsson L (2008) Defective regulation of contractile function in muscle fibres carrying an E41K beta-tropomyosin mutation. J Physiol 586:2993–3004CrossRefPubMedGoogle Scholar
  28. 28.
    Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102:2389–2397CrossRefPubMedGoogle Scholar
  29. 29.
    Powers SK, Shanely RA, Coombes JS, Koesterer TJ, McKenzie M, Van Gammeren D, Cicale M, Dodd SL (2002) Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol 92:1851–1858PubMedGoogle Scholar
  30. 30.
    Regnier M, Martin H, Barsotti RJ, Rivera AJ, Martyn DA, Clemmens E (2004) Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle. Biophys J 87:1815–1824CrossRefPubMedGoogle Scholar
  31. 31.
    Sassoon CS, Zhu E, Caiozzo VJ (2004) Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 170:626–632CrossRefPubMedGoogle Scholar
  32. 32.
    Seow CY, Shroff SG, Ford LE (1997) Detachment of low-force bridges contributes to the rapid tension transients of skinned rabbit skeletal muscle fibres. J Physiol 501(Pt 1):149–164CrossRefPubMedGoogle Scholar
  33. 33.
    Shanely RA, Van Gammeren D, Deruisseau KC, Zergeroglu AM, McKenzie MJ, Yarasheski KE, Powers SK (2004) Mechanical ventilation depresses protein synthesis in the rat diaphragm. Am J Respir Crit Care Med 170:994–999CrossRefPubMedGoogle Scholar
  34. 34.
    Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, Belcastro A, Powers SK (2002) Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 166:1369–1374CrossRefPubMedGoogle Scholar
  35. 35.
    Solaro RJ, Gambassi G, Warshaw DM, Keller MR, Spurgeon HA, Beier N, Lakatta EG (1993) Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments. Circ Res 73:981–990PubMedGoogle Scholar
  36. 36.
    Spencer T, Posterino GS (2009) Sequential effects of GSNO and H2O2 on the Ca2+ sensitivity of the contractile apparatus of fast- and slow-twitch skeletal muscle fibers from the rat. Am J Physiol, Cell Physiol 296:C1015–C1023CrossRefPubMedGoogle Scholar
  37. 37.
    van Hees HW, Dekhuijzen PN, Heunks LM (2009) Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 179:41–47CrossRefPubMedGoogle Scholar
  38. 38.
    Vannier C, Lakomkine V, Vassort G (1997) Tension response of the cardiotonic agent (+)-EMD-57033 at the single cell level. Am J Physiol 272:C1586–C1593PubMedGoogle Scholar
  39. 39.
    Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 169:336–341CrossRefPubMedGoogle Scholar
  40. 40.
    Vassilakopoulos T, Zakynthinos S, Roussos C (1996) Respiratory muscles and weaning failure. Eur Respir J 9:2383–2400CrossRefPubMedGoogle Scholar
  41. 41.
    Wang X, Li MX, Spyracopoulos L, Beier N, Chandra M, Solaro RJ, Sykes BD (2001) Structure of the C-domain of human cardiac troponin C in complex with the Ca2+ sensitizing drug EMD 57033. J Biol Chem 276:25456–25466CrossRefPubMedGoogle Scholar
  42. 42.
    Zak R, Martin AF, Blough R (1979) Assessment of protein turnover by use of radioisotopic tracers. Physiol Rev 59:407–447PubMedGoogle Scholar
  43. 43.
    Zergeroglu MA, McKenzie MJ, Shanely RA, Van Gammeren D, DeRuisseau KC, Powers SK (2003) Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol 95:1116–1124PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Julien Ochala
    • 1
    • 4
    Email author
  • Peter J. Radell
    • 2
  • Lars I. Eriksson
    • 2
  • Lars Larsson
    • 1
    • 3
  1. 1.Department of Clinical NeurophysiologyUppsala University HospitalUppsalaSweden
  2. 2.Department of Anesthesiology and Intensive Care MedicineKarolinska InstituteStockholmSweden
  3. 3.Center for Development and Health GeneticsThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of Neuroscience, Clinical NeurophysiologyUniversity HospitalUppsalaSweden

Personalised recommendations