Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 458, Issue 6, pp 1061–1068 | Cite as

Distinct regulation of cardiac If current via thyroid receptors alpha1 and beta1

  • Natig Gassanov
  • Fikret Er
  • Jeannette Endres-Becker
  • Martin Wolny
  • Christoph Schramm
  • Uta C. Hoppe
Ion Channels, Receptors and Transporters

Abstract

Thyroid hormone (TH) markedly modulates cardiovascular function and heart rate. The pacemaker current If and encoding hyperpolarization-activated cation (HCN) genes have been identified as TH targets. To analyze the specific contribution and functional significance of thyroid receptor isoforms responsible for HCN gene transactivation, we generated transgenic neonatal rat cardiomyocytes with adenovirus-mediated overexpression of the thyroid receptors alpha1 (TRα1) and beta1 (TRβ1), and analyzed native If current and expression levels of the underlying molecular components HCN2 and HCN4. Initial results revealed that spontaneous beating activity was higher in TRα1- and lower in TRβ1-expressing cardiomyocytes. This was associated with accelerated depolarization velocity and abbreviated action potential duration in cells overexpressing TRα1, while TRβ1 suppressed phase 4 depolarization and prolonged action potentials. Consistently, TRα1-infected myocytes exhibited larger If current densities along with increased HCN2 and HCN4 mRNA and protein levels. In contrast, HCN2 gene expression was not significantly affected by TRβ1. TRβ1 exclusively suppressed HCN4 transcription. T3 application led to significant effects only in controls and TRα1-infected cardiomyocytes; whereas, no ligand-dependent actions were observed in TRβ1-expressing neonatal cardiomyocytes. Our results demonstrate that TRα1 and TRβ1 divergently regulate cardiac pacing activity. TH-induced positive chronotropic effects are likely to be mediated by TRα1 through enhanced expression of If pacemaker current and its underlying genes.

Keywords

Heart rate Thyroid hormone Pacemaker channel Electrophysiology Thyroid receptor 

Notes

Acknowledgements

We are grateful to N. Henn and I. Berg for technical assistance. This study was supported by a grant from the Deutsche Forschungsgemeinschaft (Ho 2146/3-3) and by the Marga and Walter Boll-Stiftung.

Disclosures

None.

References

  1. 1.
    Allessie MA, Boyden PA, Camm AJ et al (2001) Pathophysiology and prevention of atrial fibrillation. Circulation 103:769–777PubMedGoogle Scholar
  2. 2.
    Artman M, Ichikawa H, Avkiran M et al (1995) Na+/Ca2+ exchange current density in cardiac myocytes from rabbits and guinea pigs during postnatal development. Am J Physiol 268:H1714–H1722PubMedGoogle Scholar
  3. 3.
    Biel M, Schneider A, Wahl C (2002) Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 12:206–212PubMedCrossRefGoogle Scholar
  4. 4.
    Desvergne B (1994) How do thyroid hormone receptors bind to structurally diverse response elements? Mol Cell Endocrinol 100:125–131PubMedCrossRefGoogle Scholar
  5. 5.
    Er F, Larbig R, Ludwig A et al (2003) Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes. Circulation 107:485–489PubMedCrossRefGoogle Scholar
  6. 6.
    Er F, Michels G, Gassanov N et al (2004) Testosterone induces cytoprotection by activating ATP-sensitive K+ channels in the cardiac mitochondrial inner membrane. Circulation 110:3100–3107PubMedCrossRefGoogle Scholar
  7. 7.
    Flamant F, Poguet AL, Plateroti M et al (2002) Congenital hypothyroid Pax8(−/−) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol 16:24–32PubMedCrossRefGoogle Scholar
  8. 8.
    Gassanov N, Er F, Michels G et al (2009) Divergent regulation of cardiac KCND3 potassium channel expression by the thyroid hormone receptors alpha1 and beta1. J Physiol 587:1319–1329PubMedCrossRefGoogle Scholar
  9. 9.
    Gassanov N, Er F, Zagidullin N et al (2004) Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB J 18:1710–1712PubMedGoogle Scholar
  10. 10.
    Gassanov N, Jankowski M, Danalache B et al (2007) Arginine vasopressin-mediated cardiac differentiation: insight into the role of its receptors and nitric oxide signaling. J Biol Chem 282:11255–11265PubMedCrossRefGoogle Scholar
  11. 11.
    Gloss B, Sayen MR, Trost SU et al (1999) Altered cardiac phenotype in transgenic mice carrying the delta337 threonine thyroid hormone receptor beta mutant derived from the S family. Endocrinology 140:897–902PubMedCrossRefGoogle Scholar
  12. 12.
    Gloss B, Trost S, Bluhm W et al (2001) Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142:544–550PubMedCrossRefGoogle Scholar
  13. 13.
    Guo W, Kamiya K, Hojo M et al (1998) Regulation of Kv4.2 and Kv1.4 K+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells. J Mol Cell Cardiol 30:1449–1455PubMedCrossRefGoogle Scholar
  14. 14.
    Harvey CB, Williams GR (2002) Mechanism of thyroid hormone action. Thyroid 12:441–446PubMedCrossRefGoogle Scholar
  15. 15.
    Hoppe UC, Jansen E, Südkamp M et al (1998) A hyperpolarization-activated inward current (If) in ventricular myocytes from normal and failing human hearts. Circulation 97:55–65PubMedGoogle Scholar
  16. 16.
    Hoppe UC, Johns DC, Marban E et al (1999) Manipulation of cellular excitability by cell fusion: effects of rapid introduction of transient outward K+ current on the guinea pig action potential. Circ Res 84:964–972PubMedGoogle Scholar
  17. 17.
    Hoppe UC, Marbán E, Johns DC (2000) Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer. J Clin Invest 105:1077–1084PubMedCrossRefGoogle Scholar
  18. 18.
    Hoppe UC, Marbán E, Johns DC (2001) Distinct gene-specific mechanisms of arrhythmia revealed by cardiac gene transfer of two long QT disease genes, HERG and KCNE1. Proc Natl Acad Sci U S A 98:5335–5340PubMedCrossRefGoogle Scholar
  19. 19.
    Jiang W, Miyamoto T, Kakizawa T et al (2004) Expression of thyroid hormone receptor alpha in 3T3–L1 adipocytes: triiodothyronine increases the expression of lipogenic enzyme and triglyceride accumulation. J Endocrinol 182:295–302PubMedCrossRefGoogle Scholar
  20. 20.
    Le Bouter S, Demolombe S, Chambellan A et al (2003) Microarray analysis reveals complex remodeling of cardiac ion channel expression with altered thyroid status: relation to cellular and integrated electrophysiology. Circ Res 92:234–242PubMedCrossRefGoogle Scholar
  21. 21.
    Ludwig A, Zong X, Jeglitsch M et al (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591PubMedCrossRefGoogle Scholar
  22. 22.
    Mai W, Janier MF, Allioli N et al (2004) Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci U S A 101:10332–10337PubMedCrossRefGoogle Scholar
  23. 23.
    Michels G, Er F, Eicks M et al (2006) Long-term and immediate effect of testosterone on single T-type calcium channel in neonatal rat cardiomyocytes. Endocrinology 147:5160–5169PubMedCrossRefGoogle Scholar
  24. 24.
    Munoz A, Bernal J (1997) Biological activities of thyroid hormone receptors. Eur J Endocrinol 137:433–445PubMedCrossRefGoogle Scholar
  25. 25.
    Nair SS, Leitch JW, Falconer J et al (1997) Prevention of cardiac arrhythmia by dietary (n-3) polyunsaturated fatty acids and their mechanism of action. J Nutr 127:383–393PubMedGoogle Scholar
  26. 26.
    O’Shea PJ, Williams GR (2002) Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol 175:553–570PubMedCrossRefGoogle Scholar
  27. 27.
    Pachucki J, Burmeister LA, Larsen PR (1999) Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res 85:498–503PubMedGoogle Scholar
  28. 28.
    Pazos-Moura C, Abel ED, Boers ME et al (2000) Cardiac dysfunction caused by myocardium-specific expression of a mutant thyroid hormone receptor. Circ Res 86:700–706PubMedGoogle Scholar
  29. 29.
    Shi W, Wymore R, Yu H et al (1999) Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 85:e1–e6PubMedGoogle Scholar
  30. 30.
    Sun ZQ, Ojamaa K, Nakamura TY et al (2001) Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. J Mol Cell Cardiol 33:811–824PubMedCrossRefGoogle Scholar
  31. 31.
    Swanson EA, Gloss B, Belke DD et al (2003) Cardiac expression and function of thyroid hormone receptor beta and its PV mutant. Endocrinology 144:4820–4825PubMedCrossRefGoogle Scholar
  32. 32.
    Wikstrom L, Johansson C, Salto C et al (1998) Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J 17:455–461PubMedCrossRefGoogle Scholar
  33. 33.
    Yonemochi H, Yasunaga S, Teshima Y et al (2000) Rapid electrical stimulation of contraction reduces the density of beta-adrenergic receptors and responsiveness of cultured neonatal rat cardiomyocytes. Possible involvement of microtubule disassembly secondary to mechanical stress. Circulation 101:2625–2630PubMedGoogle Scholar
  34. 34.
    Zicha S, Fernandez-Velasco M, Lonardo G et al (2005) Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc Res 66:472–481PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Natig Gassanov
    • 1
  • Fikret Er
    • 1
  • Jeannette Endres-Becker
    • 1
  • Martin Wolny
    • 1
  • Christoph Schramm
    • 1
  • Uta C. Hoppe
    • 1
    • 2
  1. 1.Department of Internal Medicine IIIUniversity of CologneCologneGermany
  2. 2.Center for Molecular Medicine (CMMC)University of CologneCologneGermany

Personalised recommendations