Pflügers Archiv - European Journal of Physiology

, Volume 458, Issue 5, pp 915–928

Reciprocal amplification of ROS and Ca2+ signals in stressed mdx dystrophic skeletal muscle fibers

  • Vyacheslav M. Shkryl
  • Adriano S. Martins
  • Nina D. Ullrich
  • Martha C. Nowycky
  • Ernst Niggli
  • Natalia Shirokova
Muscle Physiology


Muscular dystrophies are among the most severe inherited muscle diseases. The genetic defect is a mutation in the gene for dystrophin, a cytoskeletal protein which protects muscle cells from mechanical damage. Mechanical stress, applied as osmotic shock, elicits an abnormal surge of Ca2+ spark-like events in skeletal muscle fibers from dystrophin deficient (mdx) mice. Previous studies suggested a link between changes in the intracellular redox environment and appearance of Ca2+ sparks in normal mammalian skeletal muscle. Here, we tested whether the exaggerated Ca2+ responses in mdx fibers are related to oxidative stress. Localized intracellular and mitochondrial Ca2+ transients, as well as ROS production, were assessed with confocal microscopy. The rate of basal cellular but not mitochondrial ROS generation was significantly higher in mdx cells. This difference was abolished by pre-incubation of mdx fibers with an inhibitor of NAD(P)H oxidase. In addition, immunoblotting showed a significantly stronger expression of NAD(P)H oxidase in mdx muscle, suggesting a major contribution of this enzyme to oxidative stress in mdx fibers. Osmotic shock produced an abnormal and persistent Ca2+ spark activity, which was suppressed by ROS-reducing agents and by inhibitors of NAD(P)H oxidase. These Ca2+ signals resulted in mitochondrial Ca2+ accumulation in mdx fibers and an additional boost in cellular and mitochondrial ROS production. Taken together, our results indicate that the excessive ROS production and the simultaneous activation of abnormal Ca2+ signals amplify each other, finally culminating in a vicious cycle of damaging events, which may contribute to the abnormal stress sensitivity in dystrophic skeletal muscle.


Ca2+ sparks Skeletal muscle mdx mice ROS Confocal microscopy 


  1. 1.
    Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MR (2005) Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 25:9176–9184PubMedCrossRefGoogle Scholar
  2. 2.
    Allen DG, Whitehead NP, Yeung EW (2005) Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567:723–735PubMedCrossRefGoogle Scholar
  3. 3.
    Aracena P, Tang W, Hamilton SL, Hidalgo C (2005) Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels. Antioxid Redox Signal 7:870–881PubMedCrossRefGoogle Scholar
  4. 4.
    Austin L, de Niese M, McGregor A, Arthur H, Gurusinghe A, Gould MK (1992) Potential oxyradical damage and energy status in individual muscle fibres from degenerating muscle diseases. Neuromuscul Disord 2:27–33PubMedCrossRefGoogle Scholar
  5. 5.
    Banfi B, Molnar G, Maturana A, Steger K, Hegedus B, Demaurex N, Krause KH (2001) A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601PubMedCrossRefGoogle Scholar
  6. 6.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313PubMedCrossRefGoogle Scholar
  7. 7.
    Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15:325–330PubMedCrossRefGoogle Scholar
  8. 8.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833PubMedCrossRefGoogle Scholar
  9. 9.
    Buetler TM, Renard M, Offord EA, Schneider H, Ruegg UT (2002) Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am J Clin Nutr 75:749–753PubMedGoogle Scholar
  10. 10.
    Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728PubMedCrossRefGoogle Scholar
  11. 11.
    Chang WJ, Iannaccone ST, Lau KS, Masters BS, McCabe TJ, McMillan K, Padre RC, Spencer MJ, Tidball JG, Stull JT (1996) Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci USA 93:9142–9147PubMedCrossRefGoogle Scholar
  12. 12.
    De Backer F, Vandebrouck C, Gailly P, Gillis JM (2002) Long-term study of Ca2+ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J Physiol 542:855–865PubMedCrossRefGoogle Scholar
  13. 13.
    Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, Watt DJ, Dickson JG, Tinsley JM, Davies KE (1997) Utrophin–dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90:717–727PubMedCrossRefGoogle Scholar
  14. 14.
    Disatnik MH, Dhawan J, Yu Y, Beal MF, Whirl MM, Franco AA, Rando TA (1998) Evidence of oxidative stress in mdx mouse muscle: studies of the pre-necrotic state. J Neurol Sci 161:77–84PubMedCrossRefGoogle Scholar
  15. 15.
    Dudley RW, Danialou G, Govindaraju K, Lands L, Eidelman DE, Petrof BJ (2006) Sarcolemmal damage in dystrophin deficiency is modulated by synergistic interactions between mechanical and oxidative/nitrosative stresses. Am J Pathol 168:1276–1287PubMedCrossRefGoogle Scholar
  16. 16.
    Dudley RW, Khairallah M, Mohammed S, Lands L, Des Rosiers C, Petrof BJ (2006) Dynamic responses of the glutathione system to acute oxidative stress in dystrophic mouse (mdx) muscles. Am J Physiol Regul Integr Comp Physiol 291:R704–R710PubMedGoogle Scholar
  17. 17.
    Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33:359–371PubMedCrossRefGoogle Scholar
  18. 18.
    Durham WJ, Aracena-Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S, Galvan DL, Gilman CP, Baker MR, Shirokova N, Protasi F, Dirksen R, Hamilton SL (2008) RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 133:53–65PubMedCrossRefGoogle Scholar
  19. 19.
    Ervasti JM, Campbell KP (1993) Dystrophin and the membrane skeleton. Curr Opin Cell Biol 5:82–87PubMedCrossRefGoogle Scholar
  20. 20.
    Espinosa A, Leiva A, Pena M, Muller M, Debandi A, Hidalgo C, Carrasco MA, Jaimovich E (2006) Myotube depolarization generates reactive oxygen species through NAD(P) H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol 209:379–388PubMedCrossRefGoogle Scholar
  21. 21.
    Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173PubMedCrossRefGoogle Scholar
  22. 22.
    Hidalgo C, Sanchez G, Barrientos G, Aracena-Parks P (2006) A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S -glutathionylation. J Biol Chem 281:26473–26482PubMedCrossRefGoogle Scholar
  23. 23.
    Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928PubMedCrossRefGoogle Scholar
  24. 24.
    Isaeva EV, Shirokova N (2003) Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol 547:453–462PubMedCrossRefGoogle Scholar
  25. 25.
    Isaeva EV, Shkryl VM, Shirokova N (2005) Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol 565:855–872PubMedCrossRefGoogle Scholar
  26. 26.
    Jung C, Martins AS, Niggli E, Shirokova N (2008) Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Cardiovasc Res 77:766–773PubMedCrossRefGoogle Scholar
  27. 27.
    Kuznetsov AV, Winkler K, Wiedemann FR, von Bossanyi P, Dietzmann K, Kunz WS (1998) Impaired mitochondrial oxidative phosphorylation in skeletal muscle of the dystrophin-deficient mdx mouse. Mol Cell Biochem 183:87–96PubMedCrossRefGoogle Scholar
  28. 28.
    Lamb GD, Posterino GS (2003) Effects of oxidation and reduction on contractile function in skeletal muscle fibres of the rat. J Physiol 546:149–163PubMedCrossRefGoogle Scholar
  29. 29.
    Marks A, Vianna DM, Carrive P (2009) Non-shivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the rat. Am J Physiol Regul Integr Comp Physiol 296:R1239–1247PubMedGoogle Scholar
  30. 30.
    Martins AS, Shkryl VM, Nowycky MC, Shirokova N (2008) Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres. J Physiol 586:197–210PubMedCrossRefGoogle Scholar
  31. 31.
    McCarter GC, Steinhardt RA (2000) Increased activity of calcium leak channels caused by proteolysis near sarcolemmal ruptures. J Membr Biol 176:169–174PubMedCrossRefGoogle Scholar
  32. 32.
    Millay DP, Sargent MA, Osinska H, Baines CP, Barton ER, Vuagniaux G, Sweeney HL, Robbins J, Molkentin JD (2008) Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 14:442–447PubMedCrossRefGoogle Scholar
  33. 33.
    Moylan JS, Reid MB (2007) Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35:411–429PubMedCrossRefGoogle Scholar
  34. 34.
    Nethery D, Callahan LA, Stofan D, Mattera R, DiMarco A, Supinski G (2000) PLA2 dependence of diaphragm mitochondrial formation of reactive oxygen species. J Appl Physiol 89:72–80PubMedGoogle Scholar
  35. 35.
    Niggli E, Shirokova N (2007) A guide to sparkology: the taxonomy of elementary cellular Ca2+ signaling events. Cell Calcium 42:379–387PubMedCrossRefGoogle Scholar
  36. 36.
    Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595PubMedCrossRefGoogle Scholar
  37. 37.
    Quinlan JG, Hahn HS, Wong BL, Lorenz JN, Wenisch AS, Levin LS (2004) Evolution of the mdx mouse cardiomyopathy: physiological and morphological findings. Neuromuscul Disord 14:491–496PubMedCrossRefGoogle Scholar
  38. 38.
    Ragusa RJ, Chow CK, Porter JD (1997) Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy. Neuromuscul Disord 7:379–386PubMedCrossRefGoogle Scholar
  39. 39.
    Ragusa RJ, Chow CK, St Clair DK, Porter JD (1996) Extraocular, limb and diaphragm muscle group-specific antioxidant enzyme activity patterns in control and mdx mice. J Neurol Sci 139:180–186PubMedCrossRefGoogle Scholar
  40. 40.
    Reid MB (2001) Redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol 90:724–731PubMedCrossRefGoogle Scholar
  41. 41.
    Robert V, Massimino ML, Tosello V, Marsault R, Cantini M, Sorrentino V, Pozzan T (2001) Alteration in calcium handling at the subcellular level in mdx myotubes. J Biol Chem 276:4647–4651PubMedCrossRefGoogle Scholar
  42. 42.
    Shirokova N, Garcia J, Rios E (1998) Local calcium release in mammalian skeletal muscle. J Physiol 512:377–384PubMedCrossRefGoogle Scholar
  43. 43.
    Shkryl VM, Shirokova N (2006) ROS scavengers inhibit stress-induced Ca2+ sparks in skeletal muscle fibers. Biophys J:67aGoogle Scholar
  44. 44.
    Shkryl VM, Shirokova N (2006) Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem 281:1547–1554PubMedCrossRefGoogle Scholar
  45. 45.
    Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81:209–237PubMedGoogle Scholar
  46. 46.
    Tidball JG, Wehling-Henricks M (2007) The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol 102:1677–1686PubMedCrossRefGoogle Scholar
  47. 47.
    Tidball JG, Albrecht DE, Lokensgard BE, Spencer MJ (1995) Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci 108:2197–2204PubMedGoogle Scholar
  48. 48.
    Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B (2007) Regulation of capacitative calcium entries by alpha1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin. FASEB J 21:608–617PubMedCrossRefGoogle Scholar
  49. 49.
    Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H, Ma J (2005) Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7:525–530PubMedCrossRefGoogle Scholar
  50. 50.
    Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155:123–131PubMedCrossRefGoogle Scholar
  51. 51.
    Whitehead NP, Pham C, Gervasio OL, Allen DG (2008) N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 586:2003–2014PubMedCrossRefGoogle Scholar
  52. 52.
    Yasuda S, Townsend D, Michele DE, Favre EG, Day SM, Metzger JM (2005) Dystrophic heart failure blocked by membrane sealant poloxamer. Nature 436:1025–1029PubMedCrossRefGoogle Scholar
  53. 53.
    Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562:367–380PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vyacheslav M. Shkryl
    • 1
    • 3
  • Adriano S. Martins
    • 1
  • Nina D. Ullrich
    • 2
  • Martha C. Nowycky
    • 1
  • Ernst Niggli
    • 2
  • Natalia Shirokova
    • 1
  1. 1.Department of Pharmacology and PhysiologyUniversity of Medicine and Dentistry of New JerseyNewarkUSA
  2. 2.Department of PhysiologyUniversity of BernBernSwitzerland
  3. 3.Department of Molecular Biophysics and PhysiologyRush UniversityChicagoUSA

Personalised recommendations