Connexins, pannexins, innexins: novel roles of “hemi-channels”

  • Eliana Scemes
  • David C. Spray
  • Paolo MedaEmail author
Ion Channels, Receptors and Transporters
The advent of multicellular organisms, some 800 million years ago, necessitated the development of mechanisms for cell-to-cell synchronization and for the spread of signals across increasingly large cell populations [ 168, 185]. Many structures and mechanisms have evolved to achieve such functions [ 4, 15]. Among these mechanisms, one which is prominent in both the invertebrate and the vertebrate world, across the entire phylogenetic scale, involves the transmembrane flux of large cytosolic and extracellular molecules [ 4, 15, 65, 66, 69, 70, 71, 121, 128, 129, 147, 154, 163]. These fluxes, in turn, are dependent on the formation of specific channels that in all animal classes are made by tetra-span integral membrane proteins [ 65, 66, 69, 70, 71, 121, 128, 129, 147, 154, 163] (Fig.  1).


Gap junctions Connexons Pannexons Innexons Membrane channels Ca2+ ATP Glutamate 



Work of our teams is supported by grants from the National Institute of Health (HD32573, NS41282, NS52245), the Swiss National Science Foundation (310000–122430), the Juvenile Diabetes Research Foundation (1-2007-158), Novo Nordisk, and the European Union (FP7-222980).


  1. 1.
    Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI (2000) Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105:161–171PubMedCrossRefGoogle Scholar
  2. 2.
    Aleksic B, Ishihara R, Takahashi N, Maeno N, Ji X, Saito S, Inada T, Ozaki N (2007) Gap junction coding genes and schizophrenia: a genetic association study. J Hum Genet 52:498–501PubMedCrossRefGoogle Scholar
  3. 3.
    Alves LA, Coutinho-Silva R, Persechini PM, Spray DC, Savino W, Campos de Carvalho AC (1996) Are there functional gap junctions or junctional hemichannels in macrophages? Blood 88:328–334PubMedGoogle Scholar
  4. 4.
    Ashcroft FM (2000) Ion channels and disease. Academic press, San Diego USA, p 481Google Scholar
  5. 5.
    Azanza MJ, Pes N, Pérez-Bruzón RN, Aisa J, Raso M, Junquera C, Lahoz JM, Maestú C, Martínez-Ciriano C, Pérez-Castejón C, Vera-Gil A, Del Moral A (2007) Localization of connexins in neurons and glia cells of the Helix aspersa suboesophageal brain ganglia by immunocytochemistry. Histol Histopathol 22:497–504PubMedGoogle Scholar
  6. 6.
    Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68PubMedCrossRefGoogle Scholar
  7. 7.
    Bao L, Sachs F, Dahl G (2004) Connexins are mechanosensitive. Am J Physiol Cell Physiol 287:C1389–C1395PubMedCrossRefGoogle Scholar
  8. 8.
    Bao L, Samuels S, Locovei S, Macagno ER, Muller KJ, Dahl G (2007) Innexins form two types of channels. FEBS Lett 581:5703–5708PubMedCrossRefGoogle Scholar
  9. 9.
    Bao X, Lee SC, Reuss L, Altenberg GA (2007) Change in permeant size selectivity by phosphorylation of connexin 43 gap-junctional hemichannels by PKC. Proc Natl Acad Sci U S A 104:4919–4924PubMedCrossRefGoogle Scholar
  10. 10.
    Bauer R, Lehmann C, Fuss B, Eckardt F, Hoch M (2002) The Drosophila gap junction channel gene innexin 2 controls foregut development in response to Wingless signalling. J Cell Sci 115:1859–1867PubMedGoogle Scholar
  11. 11.
    Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26:40–47PubMedCrossRefGoogle Scholar
  12. 12.
    Beyer EC, Steinberg TH (1991) Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J Biol Chem 266:7971–7974PubMedGoogle Scholar
  13. 13.
    Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282:31733–31743PubMedCrossRefGoogle Scholar
  14. 14.
    Boassa D, Qiu F, Dahl G, Sosinsky G (2008) Trafficking dynamics of glycosylated pannexin 1 proteins. Cell Commun Adhes 15:119–132PubMedCrossRefGoogle Scholar
  15. 15.
    Bröer S, Wagner CA (2003) Membrane transporter diseases. Kluwer Academic, New York USA, p 404Google Scholar
  16. 16.
    Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043PubMedCrossRefGoogle Scholar
  17. 17.
    Bruzzone R, Dermietzel R (2006) Structure and function of gap junctions in the developing brain. 326:239–248Google Scholar
  18. 18.
    Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649PubMedCrossRefGoogle Scholar
  19. 19.
    Buisman HP, Steinberg TH, Fischbarg J, Silverstein SC, Vogelzang SA, Ince C, Ypey DL, Leijh PC (1988) Extracellular ATP induces a large nonselective conductance in macrophage plasma membranes. Proc Natl Acad Sci USA 85:7988–7992PubMedCrossRefGoogle Scholar
  20. 20.
    Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MV, Verselis VK, Willecke K (2006) Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA 103:9726–9731PubMedCrossRefGoogle Scholar
  21. 21.
    Chadjichristos CE, Kwak BR (2007) Connexins: new genes in atherosclerosis. Ann Med 39:402–411PubMedCrossRefGoogle Scholar
  22. 22.
    Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR (2005) Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 1711:197–207PubMedCrossRefGoogle Scholar
  23. 23.
    Chanson M, Roy C, Spray DC (1994) Voltage-dependent gap junctional conductance in hepatopancreatic cells of Procambarus clarkii. Am J Physiol 266:C569–C577PubMedGoogle Scholar
  24. 24.
    Chaumont S, Khakh BS (2008) Patch-clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels. Proc Natl Acad Sci USA 105:12063–12068PubMedCrossRefGoogle Scholar
  25. 25.
    Chen B, Liu Q, Ge Q, Xie J, Wang ZW (2007) UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr Biol 17:1334–1339PubMedCrossRefGoogle Scholar
  26. 26.
    Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106PubMedCrossRefGoogle Scholar
  27. 27.
    Chuang CF, Vanhoven MK, Fetter RD, Verselis VK, Bargmann CI (2007) An innexin-dependent cell network establishes left-right neuronal asymmetry in C. elegans. Cell 129:787–799PubMedCrossRefGoogle Scholar
  28. 28.
    Cockcroft S, Gomperts BD (1979) Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol 296:229–243PubMedGoogle Scholar
  29. 29.
    Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin JP, Janel N, Meda P, Petit C (2007) Connexin30 deficiency causes instrastrial fluid–blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci USA 104:6229–6234PubMedCrossRefGoogle Scholar
  30. 30.
    Collings A, Islam MS, Juonala M, Rontu R, Kähönen M, Hutri-Kähönen N, Laitinen T, Marniemi J, Viikari JS, Raitakari OT, Lehtimäki TJ (2007) Associations between connexin37 gene polymorphism and markers of subclinical atherosclerosis: the Cardiovascular Risk in Young Finns study. Atherosclerosis 195:379–384PubMedCrossRefGoogle Scholar
  31. 31.
    Combettes L, Dumont M, Berthon B, Erlinger S, Claret M (1988) Release of calcium from the endoplasmic reticulum by bile acids in rat liver cells. J Biol Chem 263:2299–2303PubMedGoogle Scholar
  32. 32.
    Contreras JE, Sáez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393PubMedCrossRefGoogle Scholar
  33. 33.
    Contreras JE, Sánchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Sáez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500PubMedCrossRefGoogle Scholar
  34. 34.
    Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev 47:290–303PubMedCrossRefGoogle Scholar
  35. 35.
    Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804PubMedGoogle Scholar
  36. 36.
    Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci USA 101:12364–12369PubMedCrossRefGoogle Scholar
  37. 37.
    Curtin KD, Zhang Z, Wyman RJ (2002) Gap junction proteins are not interchangeable in development of neural function in the Drosophila visual system. J Cell Sci 115:3379–3388PubMedGoogle Scholar
  38. 38.
    Dahl G, Locovei S (2006) Pannexin: to gap or not to gap, is that a question? IUBMB Life 58:409–419PubMedCrossRefGoogle Scholar
  39. 39.
    de Boer TP, van der Heyden MA (2005) Xenopus connexins: how frogs bridge the gap. Differentiation 73:330–340PubMedCrossRefGoogle Scholar
  40. 40.
    De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 11(25):34–44CrossRefGoogle Scholar
  41. 41.
    De Zeeuw CI, Chorev E, Devor A, Manor Y, Van Der Giessen RS, De Jeu MT, Hoogenraad CC, Bijman J, Ruigrok TJ, French P, Jaarsma D, Kistler WM, Meier C, Petrasch-Parwez E, Dermietzel R, Sohl G, Gueldenagel M, Willecke K, Yarom Y (2003) Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 23:4700–4711PubMedGoogle Scholar
  42. 42.
    DeVries SH, Schwartz EA (1992) Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol 445:201–230PubMedGoogle Scholar
  43. 43.
    Dobrowolski R, Sommershof A, Willecke K (2007) Some oculodentodigital dysplasia-associated Cx43 mutations cause increased hemichannel activity in addition to deficient gap junction channels. J Membr Biol 219:9–17PubMedCrossRefGoogle Scholar
  44. 44.
    Duffy HS, John GR, Lee SC, Brosnan CF, Spray DC (2000) Reciprocal regulation of the junctional proteins claudin-1 and connexin43 by interleukin-1beta in primary human fetal astrocytes. J Neurosci 20:RC114PubMedGoogle Scholar
  45. 45.
    Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov VI (2006) Expression of pannexin family of proteins in the retina. FEBS Lett 580:2178–2182PubMedCrossRefGoogle Scholar
  46. 46.
    Eltzschig HK, Eckle T, Mager A, Küper N, Karcher C, Weissmüller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99:1100–1108PubMedCrossRefGoogle Scholar
  47. 47.
    Enkvist MO, McCarthy KD (1992) Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J Neurochem 59:519–526PubMedCrossRefGoogle Scholar
  48. 48.
    Epstein ML, Gilula NB (1977) A study of communication specificity between cells in culture. J Cell Biol 75:769–787PubMedCrossRefGoogle Scholar
  49. 49.
    Faria RX, Defarias FP, Alves LA (2005) Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol Cell Physiol 288:C260–C271PubMedCrossRefGoogle Scholar
  50. 50.
    Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883PubMedGoogle Scholar
  51. 51.
    Finbow ME, Buultjens TE, Lane NJ, Shuttleworth J, Pitts JD (1984) Isolation and characterisation of arthropod gap junctions. EMBO J 3:2271–2278PubMedGoogle Scholar
  52. 52.
    Fortes FS, Pecora IL, Persechini PM, Hurtado S, Costa V, Coutinho-Silva R, Braga MB, Silva-Filho FC, Bisaggio RC, De Farias FP, Scemes E, De Carvalho AC, Goldenberg RC (2004) Modulation of intercellular communication in macrophages: possible interactions between GAP junctions and P2 receptors. J Cell Sci 117:4717–4726PubMedCrossRefGoogle Scholar
  53. 53.
    Fraser SE, Green CR, Bode HR, Gilula NB (1987) Selective disruption of gap junctional communication interferes with a patterning process in hydra. Science 237:49–55PubMedCrossRefGoogle Scholar
  54. 54.
    Fu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC (2004) CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J Biol Chem 279:36943–36950PubMedCrossRefGoogle Scholar
  55. 55.
    Gellhaus A, Dong X, Propson S, Maass K, Klein-Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E (2004) Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 279:36931–36942PubMedCrossRefGoogle Scholar
  56. 56.
    Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214PubMedCrossRefGoogle Scholar
  57. 57.
    Gerido DA, DeRosa AM, Richard G, White TW (2007) Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness. Am J Physiol Cell Physiol 293:C337–C345PubMedCrossRefGoogle Scholar
  58. 58.
    Giaume C, Spira ME, Korn H (1980) Uncoupling of invertebrate electrotonic synapses by carbon dioxide. Neurosci Lett 17:197–202PubMedCrossRefGoogle Scholar
  59. 59.
    Gilula NB, Satir P (1971) Septate and gap junctions in molluscan gill epithelium. J Cell Biol 51:869–872PubMedCrossRefGoogle Scholar
  60. 60.
    González D, Gómez-Hernández JM, Barrio LC (2006) Species specificity of mammalian connexin-26 to form open voltage-gated hemichannels. FASEB J 20:2329–2338PubMedCrossRefGoogle Scholar
  61. 61.
    Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294PubMedCrossRefGoogle Scholar
  62. 62.
    Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528PubMedGoogle Scholar
  63. 63.
    Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148PubMedGoogle Scholar
  64. 64.
    Harris A, Locke D (2008) Connexin biology: the role of gap junction in disease. The Humana, Totowa, NJ, USA, ppGoogle Scholar
  65. 65.
    Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472PubMedGoogle Scholar
  66. 66.
    Harrison DG, Cai H (2003) Endothelial control of vasomotion and nitric oxide production. Cardiol Clin 21:289–302PubMedCrossRefGoogle Scholar
  67. 67.
    Hassinger TD, Guthrie PB, Atkinson PB, Bennett MV, Kater SB (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 93:13268–13273PubMedCrossRefGoogle Scholar
  68. 68.
    Hempelmann A, Heils A, Sander T (2006) Confirmatory evidence for an association of the connexin-36 gene with juvenile myoclonic epilepsy. Epilepsy Res 71:223–228PubMedCrossRefGoogle Scholar
  69. 69.
    Hervé JC (2005) The connexins, part II. Biochim Biophys Acta 1711:97–246PubMedCrossRefGoogle Scholar
  70. 70.
    Hervé JC (2004) The connexins, part I. Biochim Biophys Acta 1662:1–172PubMedCrossRefGoogle Scholar
  71. 71.
    Hervé JC (2005) The connexins, part III. Biochem Biophys Acta 1719:1–160PubMedCrossRefGoogle Scholar
  72. 72.
    Hickman SE, Semrad CE, Silverstein SC (1996) P2Z purinoceptors. Ciba Found Symp 198:71–83PubMedGoogle Scholar
  73. 73.
    Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154PubMedCrossRefGoogle Scholar
  74. 74.
    Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31:487–495PubMedCrossRefGoogle Scholar
  75. 75.
    Hua VB, Chang AB, Tchieu JH, Kumar NM, Nielsen PA, Saier MH (2003) Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J Membr Biol 194:59–76PubMedCrossRefGoogle Scholar
  76. 76.
    Huang Y, Grinspan JB, Abrams CK, Scherer SS (2007) Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 55:46–56PubMedCrossRefGoogle Scholar
  77. 77.
    Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds. Proc Natl Acad Sci USA 104:6436–6441PubMedCrossRefGoogle Scholar
  78. 78.
    Iacobas DA, Iacobas S, Spray DC (2007) Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol 94:169–185PubMedCrossRefGoogle Scholar
  79. 79.
    Iglesias R, Locovei S, Roque AP, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor–Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295:C752–C760PubMedCrossRefGoogle Scholar
  80. 80.
    Iovine MK, Gumpert AM, Falk MM, Mendelson TC (2008) Cx23, a connexin with only four extracellular-loop cysteines, forms functional gap junction channels and hemichannels. FEBS Lett 582:165–170PubMedCrossRefGoogle Scholar
  81. 81.
    Jiang H, Zhu AG, Mamczur M, Falck JR, Lerea KM, McGiff JC (2007) Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids. Br J Pharmacol 151:1033–1040PubMedCrossRefGoogle Scholar
  82. 82.
    Jiang JX, Gu S (2005) Gap junction- and hemichannel-independent actions of connexins. Biochim Biophys Acta 1711:208–214PubMedCrossRefGoogle Scholar
  83. 83.
    John GR, Lee SC, Song X, Rivieccio M, Brosnan CF (2005) IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia 49:161–176PubMedCrossRefGoogle Scholar
  84. 84.
    John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240PubMedCrossRefGoogle Scholar
  85. 85.
    Johnston MF, Simon SA, Ramón F (1980) Interaction of anaesthetics with electrical synapses. Nature 286:498–500PubMedCrossRefGoogle Scholar
  86. 86.
    Kahlenberg JM, Dubyak GR (2004) Mechanisms of caspase-1 activation by P2X7 receptor-mediated K + release. Am J Physiol Cell Physiol 286:C1100–C1108PubMedCrossRefGoogle Scholar
  87. 87.
    Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711PubMedCrossRefGoogle Scholar
  88. 88.
    Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Núñez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443PubMedCrossRefGoogle Scholar
  89. 89.
    Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W, Makazan J, Tanguy S, Spray DC (2007) The role of connexins in controlling cell growth and gene expression. Prog Biophys Mol Biol 94:245–264PubMedCrossRefGoogle Scholar
  90. 90.
    Kleopa KA, Scherer SS (2006) Molecular genetics of X-linked Charcot-Marie-Tooth disease. Neuromolecular Med 8:107–122PubMedCrossRefGoogle Scholar
  91. 91.
    Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872PubMedCrossRefGoogle Scholar
  92. 92.
    Kretz M, Maass K, Willecke K (2004) Expression and function of connexins in the epidermis, analyzed with transgenic mouse mutants. Eur J Cell Biol 83:647–654PubMedCrossRefGoogle Scholar
  93. 93.
    Lai CP, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC (2007) Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67:1545–1554PubMedCrossRefGoogle Scholar
  94. 94.
    Laird DW (2008) Closing the gap on autosomal dominant connexin-26 and connexin-43 mutants linked to human disease. J Biol Chem 283:2997–3001PubMedCrossRefGoogle Scholar
  95. 95.
    Landesman Y, White TW, Starich TA, Shaw JE, Goodenough DA, Paul DL (1999) Innexin-3 forms connexin-like intercellular channels. J Cell Sci 112:2391–2396PubMedGoogle Scholar
  96. 96.
    Larsen WJ (1977) Structural diversity of gap junctions. A review. Tissue Cell 9:373–394CrossRefGoogle Scholar
  97. 97.
    Leithe E, Sirnes S, Omori Y, Rivedal E (2006) Downregulation of gap junctions in cancer cells. Crit Rev Oncog 12:225–256PubMedGoogle Scholar
  98. 98.
    Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG (1996) Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019–1030PubMedCrossRefGoogle Scholar
  99. 99.
    Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28:681–695PubMedCrossRefGoogle Scholar
  100. 100.
    Lin R, Martyn KD, Guyette CV, Lau AF, Warn-Cramer BJ (2006) v-Src tyrosine phosphorylation of connexin43: regulation of gap junction communication and effects on cell tranformation. Cell Commun Adhes 13:199–216PubMedGoogle Scholar
  101. 101.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  102. 102.
    Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ (2006) Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54:343–357PubMedCrossRefGoogle Scholar
  103. 103.
    Liu TF, Li HY, Atkinson MM, Johnson RG (1996) Comparison of lucifer yellow leakage and cell-to-cell transfer following intracellular injection in normal and antisense Novikoff cells under treatment with low extracellular Ca2+. Meth Find Exp Clin Pharmacol 18:493–497Google Scholar
  104. 104.
    Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659PubMedCrossRefGoogle Scholar
  105. 105.
    Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett 581:483–488PubMedCrossRefGoogle Scholar
  106. 106.
    Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244PubMedCrossRefGoogle Scholar
  107. 107.
    Lomax RB, Camello C, Van Coppenolle F, Petersen OH, Tepikin AV (2002) Basal and physiological Ca2+ leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons. J Biol Chem 277:26479–26485PubMedCrossRefGoogle Scholar
  108. 108.
    Mas C, Taske N, Deutsch S, Guipponi M, Thomas P, Covanis A, Friis M, Kjeldsen MJ, Pizzolato GP, Villemure JG, Buresi C, Rees M, Malafosse A, Gardiner M, Antonarakis SE, Meda P (2004) Association of the connexin36 gene with juvenile myoclonic epilepsy. J Med Genet 41:e93–e98PubMedCrossRefGoogle Scholar
  109. 109.
    Meda P, Spray DC (2000) Gap junction function. Adv Mol Cell Biol 30:263–322CrossRefGoogle Scholar
  110. 110.
    Medler K (2008) Signaling mechanisms controlling taste cell function. Crit Rev Eukaryot Gene Expr 18:125–137PubMedGoogle Scholar
  111. 111.
    Même W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C (2006) Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB J 20:494–496PubMedGoogle Scholar
  112. 112.
    Mire P, Nasse J, Venable-Thibodeaux S (2000) Gap junctional communication in the vibration-sensitive response of sea anemones. Hear Res 144:109–123PubMedCrossRefGoogle Scholar
  113. 113.
    Morita M, Saruta C, Kozuka N, Okubo Y, Itakura M, Takahashi M, Kudo Y (2007) Dual regulation of astrocyte gap junction hemichannels by growth factors and a pro-inflammatory cytokine via the mitogen-activated protein kinase cascade. Glia 55:508–515PubMedCrossRefGoogle Scholar
  114. 114.
    Musil LS, Goodenough DA (1991) Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357–1374PubMedCrossRefGoogle Scholar
  115. 115.
    Naus CC, Bond SL, Bechberger JF, Rushlow W (2000) Identification of genes differentially expressed in C6 glioma cells transfected with connexin43. Brain Res Brain Res Rev 32:259–266PubMedCrossRefGoogle Scholar
  116. 116.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  117. 117.
    Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110PubMedCrossRefGoogle Scholar
  118. 118.
    Oh S, Verselis VK, Bargiello TA (2008) Charges dispersed over the permeation pathway determine the charge selectivity and conductance of a Cx32 chimeric hemichannel. J Physiol 586:2445–2461PubMedCrossRefGoogle Scholar
  119. 119.
    Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359:241–244PubMedCrossRefGoogle Scholar
  120. 120.
    Pahujaa M, Anikin M, Goldberg GS (2007) Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells. Exp Cell Res 313:4083–4090PubMedCrossRefGoogle Scholar
  121. 121.
    Panchin YV (2005) Evolution of gap junction proteins—the pannexin alternative. J Exp Biol 208:1415–1419PubMedCrossRefGoogle Scholar
  122. 122.
    Parpura V, Scemes E, Spray DC (2004) Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int 45:259–264PubMedCrossRefGoogle Scholar
  123. 123.
    Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089PubMedCrossRefGoogle Scholar
  124. 124.
    Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082PubMedCrossRefGoogle Scholar
  125. 125.
    Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783PubMedCrossRefGoogle Scholar
  126. 126.
    Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203PubMedGoogle Scholar
  127. 127.
    Petersen MB, Willems PJ (2006) Non-syndromic, autosomal-recessive deafness. Clin Genet 69:371–392PubMedCrossRefGoogle Scholar
  128. 128.
    Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245PubMedCrossRefGoogle Scholar
  129. 129.
    Phelan P, Starich TA (2001) Innexins get into the gap. Bioessays 23:388–396PubMedCrossRefGoogle Scholar
  130. 130.
    Pinton P, Ferrari D, Magalhães P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862PubMedCrossRefGoogle Scholar
  131. 131.
    Pointis G, Fiorini C, Gilleron J, Carette D, Segretain D (2007) Connexins as precocious markers and molecular targets for chemical and pharmacological agents in carcinogenesis. Curr Med Chem 14:2288–2303PubMedCrossRefGoogle Scholar
  132. 132.
    Prochnow N, Dermietzel R (2008) Connexons and cell adhesion: a romantic phase. Histochem Cell Biol 130:71–77PubMedCrossRefGoogle Scholar
  133. 133.
    Qu Y, Dahl G (2004) Accessibility of Cx46 hemichannels for uncharged molecules and its modulation by voltage. Biophys J 86:1502–1509PubMedCrossRefGoogle Scholar
  134. 134.
    Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1063–1074PubMedCrossRefGoogle Scholar
  135. 135.
    Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS ONE 2:e712PubMedCrossRefGoogle Scholar
  136. 136.
    Ravier MA, Güldenagel M, Charollais A, Gjinovci A, Caille D, Söhl G, Wollheim CB, Willecke K, Henquin JC, Meda P (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54:1798–1807PubMedCrossRefGoogle Scholar
  137. 137.
    Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez PJ, Sáez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792PubMedCrossRefGoogle Scholar
  138. 138.
    Retamal MA, Schalper KA, Shoji KF, Bennett MV, Sáez JC (2007) Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci USA 104:8322–8327PubMedCrossRefGoogle Scholar
  139. 139.
    Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33:C7–C12PubMedCrossRefGoogle Scholar
  140. 140.
    Richard G (2005) Connexin disorders of the skin. Clin Dermatol 23:23–32PubMedCrossRefGoogle Scholar
  141. 141.
    Rodríguez-Sinovas A, Cabestrero A, López D, Torre I, Morente M, Abellán A, Miró E, Ruiz-Meana M, García-Dorado D (2007) The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol 94:219–232PubMedCrossRefGoogle Scholar
  142. 142.
    Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS (2007) Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 26:657–667PubMedCrossRefGoogle Scholar
  143. 143.
    Sabag AD, Dagan O, Avraham KB (2005) Connexins in hearing loss: a comprehensive overview. J Basic Clin Physiol Pharmacol 16:101–116PubMedGoogle Scholar
  144. 144.
    Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224PubMedCrossRefGoogle Scholar
  145. 145.
    Scemes E (2008) Modulation of astrocyte P2Y1 receptors by the carboxyl terminal domain of the gap junction protein Cx43. Glia 56:145–153PubMedCrossRefGoogle Scholar
  146. 146.
    Scemes E, Bavamian S, Charollais A, Spray DC, Meda P (2008) Lack of “hemichannel” activity in insulin-producing cells. Cell Commun Adhes 15:143–154PubMedCrossRefGoogle Scholar
  147. 147.
    Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208PubMedCrossRefGoogle Scholar
  148. 148.
    Schalper KA, Palacios-Prado N, Orellana JA, Sáez JC (2008) Currently used methods for identification and characterization of hemichannels. Cell Commun Adhes 15:207–218PubMedCrossRefGoogle Scholar
  149. 149.
    Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martínez AD, Sáez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19:3501–3513PubMedCrossRefGoogle Scholar
  150. 150.
    Schilling WP, Wasylyna T, Dubyak GR, Humphreys BD, Sinkins WG (1999) Maitotoxin and P2Z/P2X7 purinergic receptor stimulation activate a common cytolytic pore. Am J Physiol 277:C766–C776PubMedGoogle Scholar
  151. 151.
    Schock SC, Leblanc D, Hakim AM, Thompson CS (2008) ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 368:138–144PubMedCrossRefGoogle Scholar
  152. 152.
    Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266PubMedCrossRefGoogle Scholar
  153. 153.
    Severs NJ, Dupont E, Thomas N, Kaba R, Rothery S, Jain R, Sharpey K, Fry CH (2006) Alterations in cardiac connexin expression in cardiomyopathies. Adv Cardiol 42:228–242PubMedCrossRefGoogle Scholar
  154. 154.
    Shestopalov VI, Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–394PubMedCrossRefGoogle Scholar
  155. 155.
    Shields CR, Klooster J, Claassen Y, Ul-Hussain M, Zoidl G, Dermietzel R, Kamermans M (2007) Retinal horizontal cell-specific promoter activity and protein expression of zebrafish connexin 52.6 and connexin 55.5. J Comp Neurol 501:765–779PubMedCrossRefGoogle Scholar
  156. 156.
    Shintani-Ishida K, Uemura K, Yoshida K (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293:H1714–H1720PubMedCrossRefGoogle Scholar
  157. 157.
    Socolar SJ, Politoff AL (1971) Uncoupling cell junctions in a glandular epithelium by depolarizing current. Science 172:492–494PubMedCrossRefGoogle Scholar
  158. 158.
    Söhl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200PubMedCrossRefGoogle Scholar
  159. 159.
    Söhl G, Odermatt B, Maxeiner S, Degen J, Willecke K (2004) New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res Brain Res Rev 47:245–259PubMedCrossRefGoogle Scholar
  160. 160.
    Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ (1998) Deformation-induced ATP release from red blood cells requires CFTR activity. Am J Physiol 275:H1726–H1732PubMedGoogle Scholar
  161. 161.
    Spray DC, Harris AL, Bennett MV (1979) Voltage dependence of junctional conductance in early amphibian embryos. Science 204:432–434PubMedCrossRefGoogle Scholar
  162. 162.
    Spray DC, Iacobas DA (2007) Organizational principles of the connexin-related brain transcriptome. J Membr Biol 218:39–47PubMedCrossRefGoogle Scholar
  163. 163.
    Spray DC, Ye ZC, Ramson BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54:758–773PubMedCrossRefGoogle Scholar
  164. 164.
    Srinivas M, Calderon DP, Kronengold J, Verselis VK (2006) Regulation of connexin hemichannels by monovalent cations. J Gen Physiol 127:67–75PubMedCrossRefGoogle Scholar
  165. 165.
    Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK (2005) Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J 88:1725–1739PubMedCrossRefGoogle Scholar
  166. 166.
    Stebbings LA, Todman MG, Phelan P, Bacon JP, Davies JA (2000) Two Drosophila innexins are expressed in overlapping domains and cooperate to form gap-junction channels. Mol Biol Cell 11:2459–2470PubMedGoogle Scholar
  167. 167.
    Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) ATP4− permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262:8884–8888PubMedGoogle Scholar
  168. 168.
    Stoka AM (1999) Phylogeny and evolution of chemical communication: an endocrine approach. J Mol Endocrinol 22:207–225PubMedCrossRefGoogle Scholar
  169. 169.
    Stong BC, Chang Q, Ahmad S, Lin X (2006) A novel mechanism for connexin 26 mutation linked deafness: cell death caused by leaky gap junction hemichannels. Laryngoscope 116:2205–2210PubMedCrossRefGoogle Scholar
  170. 170.
    Stout C, Charles A (2003) Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43:265–273PubMedCrossRefGoogle Scholar
  171. 171.
    Stout C, Goodenough DA, Paul DL (2004) Connexins: functions without junctions. 16:507–512Google Scholar
  172. 172.
    Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488PubMedCrossRefGoogle Scholar
  173. 173.
    Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385PubMedCrossRefGoogle Scholar
  174. 174.
    Suadicani SO, Flores CE, Urban-Maldonado M, Beelitz M, Scemes E (2004) Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia 48:217–229PubMedCrossRefGoogle Scholar
  175. 175.
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738PubMedCrossRefGoogle Scholar
  176. 176.
    Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368PubMedCrossRefGoogle Scholar
  177. 177.
    Tao L, Harris AL (2007) 2-aminoethoxydiphenyl borate directly inhibits channels composed of connexin26 and/or connexin32. Mol Pharmacol 71:570–579PubMedCrossRefGoogle Scholar
  178. 178.
    Tatham PE, Lindau M (1990) ATP-induced pore formation in the plasma membrane of rat peritoneal mast cells. J Gen Physiol 95:459–476PubMedCrossRefGoogle Scholar
  179. 179.
    Tazuke SI, Schulz C, Gilboa L, Fogarty M, Mahowald AP, Guichet A, Ephrussi A, Wood CG, Lehmann R, Fuller MT (2002) A germline-specific gap junction protein required for survival of differentiating early germ cells. Development 129:2529–2539PubMedGoogle Scholar
  180. 180.
    Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927PubMedCrossRefGoogle Scholar
  181. 181.
    Tong D, Li TY, Naus KE, Bai D, Kidder GM (2007) In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells. J Cell Sci 120:4016–4024PubMedCrossRefGoogle Scholar
  182. 182.
    Tong JJ, Ebihara L (2006) Structural determinants for the differences in voltage gating of chicken Cx56 and Cx45.6 gap-junctional hemichannels. Biophys J 91:2142–2154PubMedCrossRefGoogle Scholar
  183. 183.
    Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611PubMedCrossRefGoogle Scholar
  184. 184.
    Trexler EB, Bukauskas FF, Bennett MV, Bargiello TA, Verselis VK (1999) Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J Gen Physiol 113:721–742PubMedCrossRefGoogle Scholar
  185. 185.
    Trinkaus JP (1984) Cells into organs. The forces that shape the embryo, 2nd edn. Prentice-Hall Inc, Englewood USA, p 543Google Scholar
  186. 186.
    Van Coppenolle F, Vanden Abeele F, Slomianny C, Flourakis M, Hesketh J, Dewailly E, Prevarskaya N (2004) Ribosome–translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci 117:4135–4142PubMedCrossRefGoogle Scholar
  187. 187.
    Vanden Abeele F, Bidaux G, Gordienko D, Beck B, Panchin YV, Baranova AV, Ivanov DV, Skryma R, Prevarskaya N (2006) Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 174:535–546PubMedCrossRefGoogle Scholar
  188. 188.
    Verselis VK, Trexler EB, Bukauskas FF (2000) Connexin hemichannels and cell-cell channels: comparison of properties. Braz J Med Biol Res 33:379–389PubMedCrossRefGoogle Scholar
  189. 189.
    Wang EC, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115:2412–2422PubMedCrossRefGoogle Scholar
  190. 190.
    Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293:C1112–C1119PubMedCrossRefGoogle Scholar
  191. 191.
    Watanabe M, Iwashita M, Ishii M, Kurachi Y, Kawakami A, Kondo S, Okada N (2006) Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep 7:893–897PubMedCrossRefGoogle Scholar
  192. 192.
    White TW, Paul DL (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61:283–310PubMedCrossRefGoogle Scholar
  193. 193.
    Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR (2006) Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12:950–954PubMedCrossRefGoogle Scholar
  194. 194.
    Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596PubMedGoogle Scholar
  195. 195.
    Yen MR, Saier MH (2007) Gap junctional proteins of animals: the innexin/pannexin superfamily. 94:5–14Google Scholar
  196. 196.
    Young MT, Pelegrin P, Surprenant A (2007) Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 71:92–100PubMedCrossRefGoogle Scholar
  197. 197.
    Yu J, Bippes CA, Hand GM, Muller DJ, Sosinsky GE (2007) Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J Biol Chem 282:8895–8904PubMedCrossRefGoogle Scholar
  198. 198.
    Zampighi GA (2003) Distribution of connexin50 channels and hemichannels in lens fibers: a structural approach. Cell Commun Adhes 10:265–270PubMedCrossRefGoogle Scholar
  199. 199.
    Zhang L, Deng T, Sun Y, Liu K, Yang Y, Zheng X (2008) Role for nitric oxide in permeability of hippocampal neuronal hemichannels during oxygen glucose deprivation. J Neurosci Res 86:2281–2291PubMedCrossRefGoogle Scholar
  200. 200.
    Zimniak P, Little JM, Radominska A, Oelberg DG, Anwer MS, Lester R (1991) Taurine-conjugated bile acids act as Ca2+ ionophores. Biochemistry 30:8598–8604PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.The Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineNew YorkUSA
  2. 2.Department of Cell Physiology and MetabolismUniversity of GenevaGeneva 4Switzerland

Personalised recommendations