Pflügers Archiv - European Journal of Physiology

, Volume 457, Issue 6, pp 1303–1325 | Cite as

Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function

  • Zoltán RusznákEmail author
  • Géza Szűcs
Sensory Physiology


The spiral ganglion cells provide the afferent innervation of the hair cells of the organ of Corti. Ninety-five percent of these cells (termed type I spiral ganglion neurones) are in synaptic contact with the inner hair cells, whereas about 5% of them are type II cells, which are responsible for the sensory innervation of the outer hair cells. To understand the function of the spiral ganglion neurones, it is important to explore their membrane properties, understand their activity patterns and describe the variety of ionic channels determining their behaviour. In this review, a brief description is given of the various experimental methods that allow the investigation of the spiral ganglion cells, followed by the discussion of their action potential firing patterns and ionic conductances. The presence, distribution and significance of the K+ currents of the spiral ganglion cells are specifically addressed, along with the introduction of the putative subunit compositions of the relevant voltage-gated K+ channels.


Spiral ganglion Type I cells Type II cells Action potentials Kv subunits 



The authors are indebted to Drs. G. Bakondi and B. Pál for reviewing and commenting on the manuscript. The authors are most grateful to Dr. B. Pál for preparing the hand-drawn illustrations, and to two unnamed reviewers whose professional and helpful suggestions and comments were very useful. This work was supported by grants from the Hungarian Scientific Research Fund (OTKA K-72812, NK-61412).


  1. 1.
    Rasmussen GL (1946) The olivary peduncle and the other fiber projections of the superior olivary complex. J Comp Neurol 84:141CrossRefGoogle Scholar
  2. 2.
    Kellerhals B, Engstrom H, Ades HW (1967) Die Morphologie des Ganglion spirale cochleae. Acta Otolaryngol 226:1–78Google Scholar
  3. 3.
    Spoendlin H (1971) Degeneration behaviour of the cochlear nerve. Arch Klin Exp Ohren Nasen Kehlkopfheilk 200:275–291CrossRefGoogle Scholar
  4. 4.
    Spoendlin H (1981) Differentiation of cochlear afferent neurons. Acta Otolaryngol 91:451–456PubMedCrossRefGoogle Scholar
  5. 5.
    Morrison D, Schindler RA, Wersäll J (1975) Quantitative analysis of the afferent innervation of the organ of Corti in guinea pig. Acta Otolaryngol 79:11–23PubMedCrossRefGoogle Scholar
  6. 6.
    Ota CY, Kimura RS (1980) Ultrastructural study of the human spiral ganglion. Acta Otolaryngol 89:53–62PubMedCrossRefGoogle Scholar
  7. 7.
    Ryan AF, Schwartz IR (1983) Preferential amino acid uptake identifies type II spiral ganglion neurons in the gerbil. Hear Res 9:173–194PubMedCrossRefGoogle Scholar
  8. 8.
    Spoendlin H (1969) Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol 67:239–254PubMedCrossRefGoogle Scholar
  9. 9.
    Spoendlin H (1972) Innervation densities of the cochlea. Acta Otolaryngol 73:235–248PubMedCrossRefGoogle Scholar
  10. 10.
    Spoendlin H (1979) Neural connections of the outer hair cell system. Acta Otolaryngol 87:381–387PubMedCrossRefGoogle Scholar
  11. 11.
    Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–121PubMedCrossRefGoogle Scholar
  12. 12.
    Berglund AM, Ryugo DK (1987) Hair cell innervation by spiral ganglion neurons in the mouse. J Comp Neurol 255:560–570PubMedCrossRefGoogle Scholar
  13. 13.
    Brown MC (1987) Morphology of labeled afferent fibers in the guinea pig cochlea. J Comp Neurol 260:591–604PubMedCrossRefGoogle Scholar
  14. 14.
    Echeteler SM (1992) Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci USA 89:6324–6327CrossRefGoogle Scholar
  15. 15.
    Robertson D, Sellcik PM, Patuzzi R (1999) The continuing search for outer hair cell afferents in the guinea pig spiral ganglion. Hear Res 136:151–158PubMedCrossRefGoogle Scholar
  16. 16.
    Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76:1506–1509PubMedCrossRefGoogle Scholar
  17. 17.
    Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752PubMedCrossRefGoogle Scholar
  18. 18.
    Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263–291PubMedGoogle Scholar
  19. 19.
    Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684PubMedGoogle Scholar
  20. 20.
    Zhang SY, Robertson D, Yates G, Everett A (1999) Role of L-type Ca2+ channels in transmitter release from mammalian inner hair cells. I. Gross sound-evoked potentials. J Neurophysiol 82:3307–3315PubMedGoogle Scholar
  21. 21.
    Godfrey DA, Carter JA, Berger SJ, Matschinsky FM (1976) Levels of putative transmitter amino acids in the guinea pig cochlea. J Histochem Cytochem 24:468–470PubMedGoogle Scholar
  22. 22.
    Altschuler RA, Sheridan CE, Horn JW, Wenthold RJ (1989) Immunocytochemical localization of glutamate immunoreactivity in the guinea pig cochlea. Hear Res 42:167–173PubMedCrossRefGoogle Scholar
  23. 23.
    Drescher MJ, Drescher DG (1992) Glutamate, of the endogenous primary alpha-amino acid, is specifically released from hair cells by elevated extracellular potassium. J Neurochem 59:93–98PubMedCrossRefGoogle Scholar
  24. 24.
    Niedzielski AS, Wenthold RJ (1995) Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J Neurosci 13:3496–3509Google Scholar
  25. 25.
    Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467PubMedGoogle Scholar
  26. 26.
    Ruel J, Chen C, Pujol R, Bobbin RP, Puel JL (1999) AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. J Physiol 518:667–680PubMedCrossRefGoogle Scholar
  27. 27.
    Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nature Neurosci 5:147–154PubMedCrossRefGoogle Scholar
  28. 28.
    Saffieddine S, Eybalin M (1992) Co-expression of NMDA and AMPA/kainate receptor mRNAs in cochlear neurones. Neuroreport 3:1145–1148CrossRefGoogle Scholar
  29. 29.
    Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155PubMedCrossRefGoogle Scholar
  30. 30.
    Dallos P, Corey ME (1991) The role of outer hair cell motility in cochlear tuning. Curr Opin Neurobiol 1:215–220PubMedCrossRefGoogle Scholar
  31. 31.
    Usami S, Osen KK, Zhang N, Ottersen OP (1992) Distribution of glutamate-like and glutamine-like immunoreactivities in the rat organ of Corti: a light microscopic and semiquantitative electron microscopic analysis with a note on the localization of aspartate. Exp Brain Res 91:1–11PubMedCrossRefGoogle Scholar
  32. 32.
    Kuriyama H, Albin RL, Altschuler RA (1993) Expression of NMDA receptor mRNA in the rat cochlea. Hear Res 69:215–220PubMedCrossRefGoogle Scholar
  33. 33.
    Kuriyama H, Jenkins O, Altschuler RA (1994) Immunocytochemical localization of AMPA selective glutamate receptor subunits in the rat cochlea. Hear Res 80:233–240PubMedCrossRefGoogle Scholar
  34. 34.
    Mott JB, Norton SJ, Neely ST, Warr WB (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear Res 38:229–242PubMedCrossRefGoogle Scholar
  35. 35.
    Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43:251–261PubMedCrossRefGoogle Scholar
  36. 36.
    Whitehead ML, Martin GK, Lonsbury-Martin BL (1991) Effects of crossed acoustic reflex on distortion-product otoacoustic emissions in awake rabbits. Hear Res 51:55–72PubMedCrossRefGoogle Scholar
  37. 37.
    Bobbin RP, Konishi T (1971) Acetylcholine mimics crossed olivocochlear bundle stimulation. Nat New Biol 231:222–223PubMedGoogle Scholar
  38. 38.
    Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–181PubMedCrossRefGoogle Scholar
  39. 39.
    Robertson D, Johnstone BM (1978) Efferent transmitter substance in the mammalian cochlea: single neuron support for acetylcholine. Hear Res 1:31–34PubMedCrossRefGoogle Scholar
  40. 40.
    Altschuler RA, Kachar B, Rubio JA, Parakkal MH, Fex J (1985) Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea. Brain Res 338:1–11PubMedCrossRefGoogle Scholar
  41. 41.
    Eybalin M, Pujol R (1987) Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp Brain Res 65:261–270PubMedCrossRefGoogle Scholar
  42. 42.
    Eybalin M, Parnaud C, Geffard M, Pujol R (1988) Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea-pig organ of Corti. Neuroscience 24:29–38PubMedCrossRefGoogle Scholar
  43. 43.
    Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291PubMedCrossRefGoogle Scholar
  44. 44.
    Lauter JL, Herscovitch P, Formby C, Raichle ME (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res 20:199–205PubMedCrossRefGoogle Scholar
  45. 45.
    Romand R, Romand MR (1985) Qualitative and quantitative observations of spiral ganglion development of the rat. Hear Res 18:111–120PubMedCrossRefGoogle Scholar
  46. 46.
    Simmons DD, Manson-Gieske L, Hendrix TW, Morris K, Williams SJ (1991) Postnatal maturation of spiral ganglion neurons: a horseradish peroxidase study. Hear Res 55:81–91PubMedCrossRefGoogle Scholar
  47. 47.
    Echeteler SM, Nofsinger YC (2000) Development of ganglion cell topography in the postnatal cochlea. J Comp Neurol 425:436–446CrossRefGoogle Scholar
  48. 48.
    Anniko M (1983) Early development and maturation of the spiral ganglion. Acta Otolaryngol 95:263–276PubMedCrossRefGoogle Scholar
  49. 49.
    Bakondi G, Pór Á, Kovács I, Szűcs G, Rusznák Z (2008) Voltage-gated K+ channel (Kv) subunit expression of the guinea pig spiral ganglion cells studied in a newly developed cochlear free-floating preparation. Brain Res 1210:148–162PubMedCrossRefGoogle Scholar
  50. 50.
    Liberman CM, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176PubMedCrossRefGoogle Scholar
  51. 51.
    Montero C (2003) The antigen–antibody reaction in immunohistochemistry. J Histochem Cytochem 51:1–4PubMedGoogle Scholar
  52. 52.
    Mo ZL, Davis RL (1997) Endogenous firing patterns of murine spiral ganglion neurons. J Neurphysiol 77:1294–1305Google Scholar
  53. 53.
    Jagger DJ, Robertson D, Housley GD (2000) A technique for slicing the rat cochlea around the onset of hearing. J Neurosci Meth 104:77–86CrossRefGoogle Scholar
  54. 54.
    Chen WC, Davis RL (2006) Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons. Hear Res 222:89–99PubMedCrossRefGoogle Scholar
  55. 55.
    Xie D, Hu P, Xiao Z, Wu W, Chen Y, Xia K (2007) Subunits of voltage-gated calcium channels in murine spiral ganglion cells. Acta Otolaryngol 127:8–12PubMedCrossRefGoogle Scholar
  56. 56.
    Spoendlin H (1985) Anatomy of cochlear innervation. Am J Otolaryngol 6:453–467PubMedCrossRefGoogle Scholar
  57. 57.
    Perkins RE, Morest DK (1975) A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarski optics. J Comp Neurol 163:129–158PubMedCrossRefGoogle Scholar
  58. 58.
    Liberman MC (1982) The cochlear frequency map for the cat: labelling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449PubMedCrossRefGoogle Scholar
  59. 59.
    Lin X (1997) Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear Res 108:157–179PubMedCrossRefGoogle Scholar
  60. 60.
    Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460PubMedCrossRefGoogle Scholar
  61. 61.
    Echteler SM (1992) Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci USA 89:6324–6327PubMedCrossRefGoogle Scholar
  62. 62.
    Sando I (1965) The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngol 59:417CrossRefGoogle Scholar
  63. 63.
    Fischer FP (1998) Hair cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae). Hear Res 121:112–124PubMedCrossRefGoogle Scholar
  64. 64.
    Brown MC (1987) Morphology of labeled afferent fibers in the guinea pig cochlea. J Comp Neurol 260:591–604PubMedCrossRefGoogle Scholar
  65. 65.
    Fechner FP, Burgess BJ, Adams JC, Liberman MC, Nadol JB Jr (1998) Dense innervation of Deiters’ and Hensen’s cells persists after chronic deefferentation of guinea pig cochleas. J Comp Neurol 400:299–309PubMedCrossRefGoogle Scholar
  66. 66.
    Berglund AM, Brown MC (1994) Central trajectories of type II spiral ganglion cells from various cochlear regions in mice. Hear Res 75:121–130PubMedCrossRefGoogle Scholar
  67. 67.
    Fechner FP, Nadol JJ, Burgess BJ, Brown MC (2001) Innervation of supporting cells in the apical turns of the guinea pig cochlea is from type II afferent fibers. J Comp Neurol 429:289–298PubMedCrossRefGoogle Scholar
  68. 68.
    Dulon D, Moataz R, Mollard P (1993) Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium 14:245–254PubMedCrossRefGoogle Scholar
  69. 69.
    Dulon D, Blanchet C, Lafflon E (1994) Photo-released intracellular Ca2+ evokes reversible mechanical responses in supporting cells of the guinea-pig organ of Corti. Biochem Biophys Res Comm 201:1263–1269PubMedCrossRefGoogle Scholar
  70. 70.
    Sugasawa M, Erostegui C, Blanchet C, Dulon D (1996) ATP activates a cation conductance and Ca2+-dependent Cl conductance in Hensen cells of guinea pig cochlea. Am J Physiol 271:1817–1827Google Scholar
  71. 71.
    Santos-Sacchi J (1993) Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear. J Neurosci 13:3599–3611PubMedGoogle Scholar
  72. 72.
    Kimura RS, Bongiorno CL, Iverson NA (1987) Synapses and ephapses in the spiral ganglion. Acta Otolaryngol Suppl 438:1–18PubMedGoogle Scholar
  73. 73.
    Kimura RS, Ota CY, Takahashi T (1979) Nerve fiber synapses on spiral ganglion cells in the human cochlea. Ann Otol Rhinol Laryngol Suppl 62:1–17Google Scholar
  74. 74.
    Arnold W (1987) Myelination of the human spiral ganglion. Acta Otolaryngol Suppl 436:76–84PubMedCrossRefGoogle Scholar
  75. 75.
    Szabó ZS, Harasztosi CS, Sziklai I, Szűcs G, Rusznák Z (2002) Ionic currents determining the membrane characteristics of type I spiral ganglion neurons of the guinea pig. Eur J Neurosci 16:1887–1895PubMedCrossRefGoogle Scholar
  76. 76.
    Szabó ZS, Harasztosi CS, Szűcs G, Sziklai I, Rusznák Z (2003) A detailed procedure and dissection guide for the isolation of spiral ganglion cells of the guinea pig for electrophysiological experiments. Brain Res Protoc 10:139–147CrossRefGoogle Scholar
  77. 77.
    Chen C (1997) Hyperpolarization-activated current (I h) in primary auditory neurons. Hear Res 110:179–190PubMedCrossRefGoogle Scholar
  78. 78.
    Robertson D (1976) Possible reaction between structure and spike shapes of neurones of the guinea pig cochlear ganglion. Brain Res 106:487–496CrossRefGoogle Scholar
  79. 79.
    Yates GK, Robertson D, Johnstone BM (1985) Very rapid adaptation in the guinea pig auditory nerve. Hear Res 17:1–12PubMedCrossRefGoogle Scholar
  80. 80.
    Romand R, Romand MR, Mulle C, Marty R (1980) Early stages of myelination in the spiral ganglion cells of the kitten during development. Acta Otolaryngol 90:391–397PubMedCrossRefGoogle Scholar
  81. 81.
    Romand R, Romand MR (1986) Perinatal growth of spiral ganglion cells in the kitten. Hear Res 21:161–165PubMedCrossRefGoogle Scholar
  82. 82.
    Romand MR, Romand R (1987) The ultrastructure of spiral ganglion cells in the mouse. Acta Otolaryngol 104:29–39PubMedCrossRefGoogle Scholar
  83. 83.
    Romand MR, Romand R (1990) Development of spiral ganglion cells in mammalian cochlea. J Electron Microsc 15:144–154CrossRefGoogle Scholar
  84. 84.
    Goycoolea MV, Stypulkowski P, Muchow DC (1990) Ultrastructural studies of the peripheral extensions (dendrites) of type I ganglion cells in the cat. Laryngoscope 100:19–24PubMedCrossRefGoogle Scholar
  85. 85.
    Romand R, Romand MR (1985) Qualitative and quantitative observations of spiral ganglion development in the rat. Hear Res 18:111–120PubMedCrossRefGoogle Scholar
  86. 86.
    Jagger DJ, Housley GD (2003) Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J Physiol 552:525–533PubMedCrossRefGoogle Scholar
  87. 87.
    Nadol JB Jr, Burgess B, Reissner C (1990) Morphometric analysis of normal human spiral ganglion cells. Ann Otol Rhinol Laryngol 99:340–348PubMedGoogle Scholar
  88. 88.
    Anniko M, Arnold W, Stigbrand T, Ström A (1995) The human spiral ganglion. ORL J Otorhinolaryngol Relat Spec 57:68–77PubMedGoogle Scholar
  89. 89.
    Hafidi A, Despres G, Romand R (1993) Ontogenesis of type II spiral ganglion neurons during development: peripherin immunohistochemistry. Int J Dev Neurosci 11:507–512PubMedCrossRefGoogle Scholar
  90. 90.
    Hafidi A (1998) Peripherin-like immunoreactivity in type II spiral ganglion cell body and projections. Brain Res 805:181–190PubMedCrossRefGoogle Scholar
  91. 91.
    Mou K, Adamson CL, Davis RL (1998) Time-dependence and cell-type specificity of synergistic neurotrophin actions on spiral ganglion neurons. J Comp Neurol 402:129–139PubMedCrossRefGoogle Scholar
  92. 92.
    Reid MA, Flores-Otero J, Davis RL (2004) Firing patterns of type II spiral ganglion neurons in vitro. J Neurosci 24:733–742PubMedCrossRefGoogle Scholar
  93. 93.
    Hsu Y, Firestein BL, Davis RL (2002) Differential distribution of membrane-associated guanylate kinases (MAGUKs) in type I and type II spiral ganglion neurons. Assoc Res Otolaryngol 25:410Google Scholar
  94. 94.
    Jagger DJ, Housley GD (2002) A-type potassium currents dominate repolarisation of neonatal rat primary auditory neurones in situ. Neuroscience 109:169–182PubMedCrossRefGoogle Scholar
  95. 95.
    Malgrange B, Rigo JM, Lefebvre PP, Coucke P, Goffin F, Xhauflaire G, Belachew S, Van De Water TR, Moonen G (1997) Diazepam-insensitive GABAA receptors on postnatal spiral ganglion neurones in culture. NeuroReport 8:591–596PubMedCrossRefGoogle Scholar
  96. 96.
    Lin X, Chen S, Chen P (2000) Activation of metabotropic GABAB receptors inhibited glutamate responses in spiral ganglion neurons of mice. NeuroReport 11:957–961PubMedCrossRefGoogle Scholar
  97. 97.
    Cho H, Harada N, Yamashita T (1997) Extracellular ATP-induced Ca2+ mobilization of type I spiral ganglion cells from the guinea pig cochlea. Acta Otolaryngol 117:545–552PubMedCrossRefGoogle Scholar
  98. 98.
    Salih SG, Housley GD, Raybould NP, Thorne PR (1999) ATP-gated ion channel expression in primary auditory neurones. NeuroReport 10:2579–2586PubMedCrossRefGoogle Scholar
  99. 99.
    Rome C, Luo D, Dulon D (1999) Muscarinic receptor-mediated calcium signalling in spiral ganglion neurons of the mammalian cochlea. Brain Res 846:196–203PubMedCrossRefGoogle Scholar
  100. 100.
    Adamson CL, Reid MA, Mo ZL, Bowne-English J, Davis RL (2002) Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J Comp Neurol 447:331–350PubMedCrossRefGoogle Scholar
  101. 101.
    Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol 226:263–287PubMedGoogle Scholar
  102. 102.
    Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455PubMedCrossRefGoogle Scholar
  103. 103.
    Bobbin RP (1979) Glutamate and aspartate mimic the afferent transmitter of the cochlea. Exp Brain Res 34:389–393PubMedCrossRefGoogle Scholar
  104. 104.
    Sewell WF (1984) The relation between the endocochlear potential and spontaneous activity in auditory nerve fibres of the cat. J Physiol 347:685–696PubMedGoogle Scholar
  105. 105.
    Kawase T, Liberman MC (1992) Spatial organisation of the auditory nerve according to spontaneous discharge rate. J Comp Neurol 319:312–318PubMedCrossRefGoogle Scholar
  106. 106.
    Lin X, Chen S (2000) Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro. Dev Brain Res 119:297–305CrossRefGoogle Scholar
  107. 107.
    Robertson D, Paki B (2002) Role of L-type Ca2+ channels in transmitter release from mammalian inner hair cells. II. Single-neuron activity. J Neurophysiol 87:2734–2740Google Scholar
  108. 108.
    Cousillas H, Cole KS, Johnstone BM (1988) Effect of spider venom on cochlear nerve activity consistent with glutaminergic transmission at hair cell-afferent dendrite synapse. Hear Res 36:213–220PubMedCrossRefGoogle Scholar
  109. 109.
    Puel JL, Bobbin RP, Fallon M (1989) Suppression of auditory nerve activity in the guinea pig cochlea by 1-(ρ-bromobenzoyl)-piperazine-2,3-dicarboxylic acid. Brain Res 487:9–15PubMedCrossRefGoogle Scholar
  110. 110.
    Robertson D (1985) Brainstem location of efferent neurons projecting to the guinea pig cochlea. Hear Res 20:79–84PubMedCrossRefGoogle Scholar
  111. 111.
    Zhou Z, Liu Q, Davis RL (2005) Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. J Neurosci 25:7558–7566PubMedCrossRefGoogle Scholar
  112. 112.
    Hapner SJ, Boeshore KL, Large TH, Lefcort F (1998) Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR). Dev Biol 201:90–100PubMedCrossRefGoogle Scholar
  113. 113.
    Adamson CL, Reid MA, Davis RL (2002) Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. J Neurosci 22:1385–1396PubMedGoogle Scholar
  114. 114.
    Malgrange B, Rogister B, Lefebvre PP, Mazy-Servais C, Welcher AA, Bonnet C, Hsu R-Y, Rigo J-M, Van De Water TR, Moonen G (1998) Expression of growth factors and their receptors in the postnatal rat cochlea. Neurochem Res 23:1133–1138PubMedCrossRefGoogle Scholar
  115. 115.
    Luo L, Koutnouyan H, Baird A, Ryan AF (1993) Acidic and basic FGF mRNA expression in the adult and developing rat cochlea. Hear Res 69:182–193PubMedCrossRefGoogle Scholar
  116. 116.
    Marzella PL, Gillespie LN, Clark GM, Bartlett PF, Kilpatrick TJ (1999) The neurotrophins act synergistically with LIF and members of the TGF-β superfamily to promote the survival of spiral ganglia neurons in vitro. Hear Res 138:73–80PubMedCrossRefGoogle Scholar
  117. 117.
    Hossain WA, Morest DK (2000) Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: immunocytochemistry and antibody perturbation. J Neurosci Res 62:40–55PubMedCrossRefGoogle Scholar
  118. 118.
    Gillespie LN, Clark GM, Bartlett PF, Marzella PL (2001) LIF is more potent than BDNF in promoting neurite outgrowth of mammalian auditory neurons in vitro. NeuroReport 12:275–279PubMedCrossRefGoogle Scholar
  119. 119.
    Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164PubMedCrossRefGoogle Scholar
  120. 120.
    Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci USA 97:883–888PubMedCrossRefGoogle Scholar
  121. 121.
    Dodson PD, Forsythe ID (2004) Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci 27:210–217PubMedCrossRefGoogle Scholar
  122. 122.
    García-Díaz JF (1999) Development of a fast transient potassium current in chick cochlear ganglion neurons. Hear Res 135:124–134PubMedCrossRefGoogle Scholar
  123. 123.
    Lin X, Chen S, Tee D (1998) Effects of quinine on the excitability and voltage-dependent currents of isolated spiral ganglion neurons in culture. J Neurophysiol 79:2503–2512PubMedGoogle Scholar
  124. 124.
    Fernandez FR, Morales E, Rashid AJ, Dunn RJ, Turner RW (2003) Inactivation of Kv3.3 potassium channels in heterologous expression systems. J Biol Chem 278:40890–40898PubMedCrossRefGoogle Scholar
  125. 125.
    Mo ZL, Adamson CL, Davis RL (2002) Dendrotoxin-sensitive K+ currents contribute to accommodation in murine spiral ganglion neurons. J Physiol 542:763–778PubMedCrossRefGoogle Scholar
  126. 126.
    Allen ML, Koh DS, Tempel BL (1998) Cyclic cAMP regulates potassium channel expression in C6 glioma by destabilizing Kv1.1 mRNA. Proc Natl Acad Sci USA 95:7693–7698PubMedCrossRefGoogle Scholar
  127. 127.
    Hopkins WF (1998) Toxin and subunit specificity of blocking affinity of three peptide toxins for heteromultimeric, voltage-gated potassium channels expressed in Xenopus oocytes. J Pharmacol Exp Ther 285:1051–1060PubMedGoogle Scholar
  128. 128.
    Smart SL, Bosma MM, Tempel BL (1997) Identification of the delayed rectifier potassium channel, Kv1.6, in cultured astrocytes. Glia 20:127–134PubMedCrossRefGoogle Scholar
  129. 129.
    Harvey AL (2001) Twenty years of dendrotoxins. Toxicon 39:15–26PubMedCrossRefGoogle Scholar
  130. 130.
    Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45:1227–1234PubMedGoogle Scholar
  131. 131.
    Hopkins WF, Allen ML, Houamed KM, Tempel BL (1994) Properties of voltage-gated K+ currents expressed in Xenopus oocytes by mKv1.1, mKv1.2 and their heteromultimers as revealed by mutagenesis of the dendrotoxin-binding site in mKv1.1. Pflügers Arch 428:382–390PubMedCrossRefGoogle Scholar
  132. 132.
    Southan AP, Robertson B (2000) Electrophysiological characterization of voltage-gated K+ currents in cerebellar basket and purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals. J Neurosci 20:114–122PubMedGoogle Scholar
  133. 133.
    Bekkers JM, Delaney AJ (2001) Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons. J Neurosci 21:6553–6560PubMedGoogle Scholar
  134. 134.
    Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880PubMedGoogle Scholar
  135. 135.
    Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15:8011–8022PubMedGoogle Scholar
  136. 136.
    Rathouz M, Trussel L (1998) Characterization of outward currents in neurons of the avian nucleus magnocellularis. J Neurophysiol 80:2824–2835PubMedGoogle Scholar
  137. 137.
    Brew HM, Hallows JL, Tempel BL (2003) Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1. J Physiol 548:1–20PubMedCrossRefGoogle Scholar
  138. 138.
    Pál B, Rusznák Z, Harasztosi CS, Szűcs G (2004) Depolarization-activated K+ currents of the bushy neurones of the rat cochlear nucleus in a thin brain slice preparation. Acta Physiol Hun 91:83–98CrossRefGoogle Scholar
  139. 139.
    Moore EJ, Hall DB, Narahashi T (1996) Sodium and potassium currents of type I spiral ganglion cells from rat. Acta Otolaryngol 116:552–560PubMedCrossRefGoogle Scholar
  140. 140.
    Sheppard DN, Valverde MA, Represa J, Giraldez F (1992) Transient outward currents in cochlear ganglion neurons of the chick embryo. Neuroscience 51:631–639PubMedCrossRefGoogle Scholar
  141. 141.
    Valverde MA, Sheppard DN, Represa J, Giraldez F (1992) Development of Na+ - and K+ -currents in the cochlear ganglion of the chick embryo. Neuroscience 51:621–630PubMedCrossRefGoogle Scholar
  142. 142.
    Rusznák Z, Forsythe ID, Brew HM, Stanfiled PR (1997) Membrane current influencing action potential latency in granule neurons of the rat cochlear nucleus. Eur J Neurosci 9:2348–2358PubMedCrossRefGoogle Scholar
  143. 143.
    Lopez-Barneo J, Llinás R (1988) Electrophysiology of mammalian tectal neurones in vitro. I. Transient ionic conductances. J Neurophysiol 60:853–868PubMedGoogle Scholar
  144. 144.
    Rogawski MA (1985) The A-current: how ubiquitous a feature of excitable cells is? Trends Neurosci 8:214–219CrossRefGoogle Scholar
  145. 145.
    Mo ZL, Davis RL (1997) Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons. J Neurophysiol 78:3019–3027PubMedGoogle Scholar
  146. 146.
    Pape H-C, McCormick DA (1989) Noradrenalin and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715–718PubMedCrossRefGoogle Scholar
  147. 147.
    McCormick DA, Huguenard IR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400PubMedGoogle Scholar
  148. 148.
    Erickson KR, Ronnekleiv OK, Kelly MJ (1993) Electrophysiology of guinea-pig supraoptic neurones: role of a hyperpolarization-activated cation current in phasic firing. J Physiol 460:407–425PubMedGoogle Scholar
  149. 149.
    Bal T, McCormick DA (1997) Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih. J Neurophysiol 77:3145–3156PubMedGoogle Scholar
  150. 150.
    McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318PubMedGoogle Scholar
  151. 151.
    Pál B, Pór Á, Szűcs G, Kovács I, Rusznák Z (2003) HCN channels contribute to the intrinsic activity of cochlear pyramidal cells. Cell Mol Life Sci 60:2189–2199PubMedCrossRefGoogle Scholar
  152. 152.
    Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25:6857–6868PubMedCrossRefGoogle Scholar
  153. 153.
    Couloigner V, Fay M, Djelidi S, Farman N, Escoubet B, Runembert I, Sterkers O, Friedlander G, Ferrary E (2001) Location and function of the epithelial Na channel in the cochlea. Am J Physiol Renal Physiol 280:F214–F222PubMedGoogle Scholar
  154. 154.
    Zhong SX, Liu ZH (2004) Immunohistochemical localization of the epithelial sodium channel in the rat inner ear. Hear Res 193:1–8PubMedCrossRefGoogle Scholar
  155. 155.
    Peng BG, Ahmad S, Chen S, Chen P, Price MP, Lin X (2004) Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci 24:10167–10175PubMedCrossRefGoogle Scholar
  156. 156.
    Hisashi K, Nakagawa T, Yasuda T, Kimitsuki T, Komune S, Komiyama S (1995) Voltage-dependent Ca2+ channels in the spiral ganglion cells of guinea pig cochlea. Hear Res 91:196–201PubMedCrossRefGoogle Scholar
  157. 157.
    Yamaguchi K, Ohmori H (1990) Voltage-gated and chemically gated ionic channels in the cultured cochlear ganglion neurone of the chick. J Physiol 420:185–206PubMedGoogle Scholar
  158. 158.
    Jiménez C, Giraldez F, Represa J, Garcia-Diaz JF (1997) Calcium currents in dissociated cochlear neurons from the chick embryo and their modification by neurotrophin-3. Neuroscience 77:673–682PubMedCrossRefGoogle Scholar
  159. 159.
    Lopez I, Ishiyama G, Acuna D, Ishiyama A, Baloh RW (2003) Immunolocalization of voltage-gated calcium channel α1 subunits in the chinchilla cochlea. Cell Tissue Res 313:177–186PubMedCrossRefGoogle Scholar
  160. 160.
    Morton-Jones RT, Cannell MB, Jeyakumar LH, Fleischer S, Housley GD (2006) Differential expression of ryanodine receptors in the rat cochlea. Neuroscience 137:275–286PubMedCrossRefGoogle Scholar
  161. 161.
    Balaban CD, Zhou J, Li HS (2003) Type 1 vanilloid receptor expression by mammalian inner ear ganglion cells. Hear Res 175:165–170PubMedCrossRefGoogle Scholar
  162. 162.
    Zheng J, Dai C, Steyger PS, Kim Y, Vass Z, Ren T, Nuttall AL (2003) Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of Corti. J Neurophysiol 90:444–445PubMedCrossRefGoogle Scholar
  163. 163.
    Kitahara T, Li HS, Balaban CD (2005) Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 201:132–144PubMedCrossRefGoogle Scholar
  164. 164.
    Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M (2005) Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol 125:929–934PubMedCrossRefGoogle Scholar
  165. 165.
    Shen J, Harada N, Kubo N, Liu B, Mizuno A, Suzuki M, Yamashita T (2006) Functional expression of transient receptor potential vanilloid 4 in the mouse cochlea. NeuroReport 17:135–139PubMedCrossRefGoogle Scholar
  166. 166.
    Bauer CA, Brozoski TJ, Myers KS (2007) Acoustic injury and TRPV1 expression in the cochlear spiral ganglion. Int Tinnitus J 13:21–28PubMedGoogle Scholar
  167. 167.
    Hibino H, Horio Y, Fujita A, Inanobe A, Doi K, Gotow T, Uchiyama Y, Kubo T, Kurachi Y (1999) Expression of an inwardly rectifying K+ channel, Kir4.1, in satellite cells of the rat cochlear ganglia. Am J Physiol 277:C638–C644PubMedGoogle Scholar
  168. 168.
    Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C (2003) Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 177:71–80PubMedCrossRefGoogle Scholar
  169. 169.
    Jin Z, Wei D, Jarlebark L (2006) Developmental expression and localization of KCNJ10 K+ channels in the guinea pig inner ear. NeuroReport 17:475–479PubMedCrossRefGoogle Scholar
  170. 170.
    Kanjhan R, Balke CL, Housley GD, Bellingham MC, Noakes PG (2004) Developmental expression of two-pore domain K+ channels, TASK-1 and TREK-1, in the rat cochlea. NeuroReport 15:437–441PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Physiology, Medical and Health Science CentreUniversity of DebrecenDebrecenHungary

Personalised recommendations