Activation of big conductance Ca2+-activated K+ channels (BK) protects the heart against ischemia–reperfusion injury

  • Bo Hjorth Bentzen
  • Oleg Osadchii
  • Thomas Jespersen
  • Rie Schultz Hansen
  • Søren-Peter Olesen
  • Morten GrunnetEmail author
Cardiovascular Physiology


Activation of the large-conductance Ca2+-activated K+ channel (BK) in the cardiac inner mitochondrial membrane has been suggested to protect the heart against ischemic injury. However, these findings are limited by the low selectivity profile and potency of the BK channel activator (NS1619) used. In the present study, we address the cardioprotective role of BK channels using a novel, potent, selective, and chemically unrelated BK channel activator, NS11021. Using electrophysiological recordings of heterologously expressed channels, NS11021 was found to activate BK α + β1 channel complexes, while producing no effect on cardiac KATP channels. The cardioprotective effects of NS11021-induced BK channel activation were studied in isolated, perfused rat hearts subjected to 35 min of global ischemia followed by 120 min of reperfusion. 3 μM NS11021 applied prior to ischemia or at the onset of reperfusion significantly reduced the infarct size [control: 44.6 ± 2.0%; NS11021: 11.4 ± 2.0%; NS11021 at reperfusion: 19.8 ± 3.3% (p < 0.001 for both treatments compared to control)] and promoted recovery of myocardial performance. Co-administration of the BK-channel inhibitor paxilline (3 μM) antagonized the protective effect. These findings suggest that tissue damage induced by ischemia and reperfusion can be reduced by activation of cardiac BK channels.


Potassium channels BK channels Ischemia–reperfusion injury Cardioprotection Mitochondria 



The work was supported by The Danish National Research Foundation Centre for Cardiac Arrhythmia, and The Danish Medical Research Council.


  1. 1.
    Ghatta S, Nimmagadda D, Xu X, O'Rourke ST (2006) Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110:103–116PubMedCrossRefGoogle Scholar
  2. 2.
    Garlid KD, Dos SP, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606:1–21PubMedCrossRefGoogle Scholar
  3. 3.
    Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A et al (2002) Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033PubMedCrossRefGoogle Scholar
  4. 4.
    Wang X, Yin C, Xi L, Kukreja RC (2004) Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am J Physiol Heart Circ Physiol 287:H2070–H2077PubMedCrossRefGoogle Scholar
  5. 5.
    Cao CM, Xia Q, Gao Q, Chen M, Wong TM (2005) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther 312:644–650PubMedCrossRefGoogle Scholar
  6. 6.
    Park WS, Kang SH, Son YK, Kim N, Ko JH, Kim HK et al (2007) The mitochondrial Ca2 + -activated K+ channel activator, NS 1619 inhibits L-type Ca2+ channels in rat ventricular myocytes. Biochem Biophys Res Commun 362:31–36PubMedCrossRefGoogle Scholar
  7. 7.
    Saleh SN, Angermann JE, Sones WR, Leblanc N, Greenwood IA (2007) Stimulation of Ca2+-gated Cl currents by the calcium-dependent K+ channel modulators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2 H-benzimidazol-2-one] and isopimaric acid. J Pharmacol Exp Ther 321:1075–1084PubMedCrossRefGoogle Scholar
  8. 8.
    Edwards G, Niederste-Hollenberg A, Schneider J, Noack T, Weston AH (1994) Ion channel modulation by NS 1619, the putative BKCa channel opener, in vascular smooth muscle. Br J Pharmacol 113:1538–1547PubMedGoogle Scholar
  9. 9.
    Holland M, Langton PD, Standen NB, Boyle JP (1996) Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Br J Pharmacol 117:119–129PubMedGoogle Scholar
  10. 10.
    Olesen SP, Munch E, Moldt P, Drejer J (1994) Selective activation of Ca(2+)-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 251:53–59PubMedCrossRefGoogle Scholar
  11. 11.
    Debska G, Kicinska A, Dobrucki J, Dworakowska B, Nurowska E, Skalska J et al (2003) Large-conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells. Biochem Pharmacol 65:1827–1834PubMedCrossRefGoogle Scholar
  12. 12.
    Heinen A, Camara AK, Aldakkak M, Rhodes SS, Riess ML, Stowe DF (2007) Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol 292:C148–C156PubMedCrossRefGoogle Scholar
  13. 13.
    Cancherini DV, Queliconi BB, Kowaltowski AJ (2007) Pharmacological and physiological stimuli do not promote Ca(2+)-sensitive K+ channel activity in isolated heart mitochondria. Cardiovasc Res 73:720–728PubMedCrossRefGoogle Scholar
  14. 14.
    Bentzen BH, Nardi A, Calloe K, Madsen LS, Olesen SP, Grunnet M (2007) The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels. Mol Pharmacol 72:1033–1044PubMedCrossRefGoogle Scholar
  15. 15.
    Ohya S, Kuwata Y, Sakamoto K, Muraki K, Imaizumi Y (2005) Cardioprotective effects of estradiol include the activation of large-conductance Ca(2+)-activated K(+) channels in cardiac mitochondria. Am J Physiol Heart Circ Physiol 289:H1635–H1642PubMedCrossRefGoogle Scholar
  16. 16.
    Wang X, Fisher PW, Xi L, Kukreja RC (2008) Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J Mol Cell Cardiol 44:105–113PubMedCrossRefGoogle Scholar
  17. 17.
    Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Arch 441:544–550PubMedCrossRefGoogle Scholar
  18. 18.
    Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC et al (1981) Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101:593–600PubMedCrossRefGoogle Scholar
  19. 19.
    Meera P, Wallner M, Jiang Z, Toro L (1996) A calcium switch for the functional coupling between alpha (hslo) and beta subunits (KV,Ca beta) of maxi K channels. FEBS Lett 382:84–88PubMedCrossRefGoogle Scholar
  20. 20.
    Kolocassides KG, Seymour AM, Galinanes M, Hearse DJ (1996) Paradoxical effect of ischemic preconditioning on ischemic contracture? NMR studies of energy metabolism and intracellular pH in the rat heart. J Mol Cell Cardiol 28:1045–1057PubMedCrossRefGoogle Scholar
  21. 21.
    Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P (2007) Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res 75:168–177PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bo Hjorth Bentzen
    • 1
  • Oleg Osadchii
    • 1
  • Thomas Jespersen
    • 1
  • Rie Schultz Hansen
    • 2
  • Søren-Peter Olesen
    • 1
    • 2
  • Morten Grunnet
    • 1
    • 2
    • 3
    Email author
  1. 1.Danish National Research Foundation Centre for Cardiac ArrhythmiaUniversity of CopenhagenCopenhagenDenmark
  2. 2.NeuroSearch A/SBallerupDenmark
  3. 3.Department of Biomedical Sciences, The Panum Institute 12.5., Faculty of Health SciencesUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations