Pflügers Archiv - European Journal of Physiology

, Volume 457, Issue 5, pp 1147–1159 | Cite as

Intrinsic and synaptic long-term depression of NTS relay of nociceptin- and capsaicin-sensitive cardiopulmonary afferents hyperactivity

  • Armenak Bantikyan
  • Gang Song
  • Paula Feinberg-Zadek
  • Chi-Sang PoonEmail author


The nucleus tractus solitarius (NTS) in the caudal medulla is a gateway for a variety of cardiopulmonary afferents important for homeostatic regulation and defense against airway and cardiovascular insults and is a key central target potentially mediating the response habituation to these inputs. Here, whole-cell and field population action potential recordings and infrared imaging in rat brainstem slices in vitro revealed a compartmental pain-pathway-like organization of capsaicin-facilitated vs. nocistatin-facilitated/nociceptin-suppressed neuronal clusters in an NTS region, which receives cardiopulmonary A- and C-fiber afferents with differing capsaicin sensitivities. All capsaicin-sensitive neurons and a fraction of nociceptin-sensitive neurons expressed N-methyl-d-aspartate (NMDA) receptor-dependent synaptic long-term depression (LTD) following afferent stimulation. All neurons also expressed activity-dependent decrease of excitability (intrinsic LTD), which converted to NMDA receptor-dependent intrinsic long-term potentiation after GABAA receptor blockade. Thus, distinct intrinsic and synaptic LTD mechanisms in the NTS specific to the relay of A- or C-fiber afferents may underlie the response habituation to persistent afferents hyperactivity that are associated with varying physiologic challenges and cardiopulmonary derangements—including hypertension, chronic cough, asthmatic bronchoconstriction, sustained elevated lung volume in chronic obstructive pulmonary disease or in continuous positive-airway-pressure therapy for sleep apnea, metabolic acidosis, and prolonged exposure to hypoxia at high altitude.


Nucleus tractus solitarius Long-term depression Long-term potentiation Cardiopulmonary C-fibers Cardiopulmonary A-fibers 



This work was supported by National Institutes of Health grants HL67966, HL72849, HL60064, and EB005460.


  1. 1.
    Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283:248–268PubMedCrossRefGoogle Scholar
  2. 2.
    Andresen M, Kunze D (1994) Nucleus tractus solitarius-gateway to neural circulatory control. Annu Rev Physiol 56:93–116PubMedCrossRefGoogle Scholar
  3. 3.
    Bolser DC (2004) Experimental models and mechanisms of enhanced coughing. Pulm Pharmacol Ther 17:383–388PubMedCrossRefGoogle Scholar
  4. 4.
    Canning BJ (2007) Encoding of the cough reflex. Pulm Pharmacol Ther 20:396–401PubMedCrossRefGoogle Scholar
  5. 5.
    Carr MJ (2004) Plasticity of vagal afferent fibres mediating cough. Pulm Pharmacol Ther 17:447–451PubMedCrossRefGoogle Scholar
  6. 6.
    Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517PubMedCrossRefGoogle Scholar
  7. 7.
    Chan SH, Chang KF, Ou CC, Chan JY (2002) Up-regulation of glutamate receptors in nucleus tractus solitarii underlies potentiation of baroreceptor reflex by heat shock protein 70. Mol Pharmacol 61:1097–1104PubMedCrossRefGoogle Scholar
  8. 8.
    Corboz MR, Fernandez X, Egan RW, Hey JA (2001) Inhibitory activity of nociceptin/orphanin FQ on capsaicin-induced bronchoconstriction in the guinea-pig. Life Sci 69:1203–1211PubMedCrossRefGoogle Scholar
  9. 9.
    Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465PubMedCrossRefGoogle Scholar
  10. 10.
    Dean C, Seagard JL (1997) Mapping of carotid baroreceptor subtype projections to the nucleus tractus solitarius using c-fos immunohistochemistry. Brain Res 758:201–208PubMedCrossRefGoogle Scholar
  11. 11.
    Dean JB, Huang RQ, Erlichman JS, Southard TL, Hellard DT (1997) Cell-cell coupling occurs in dorsal medullary neurons after minimizing anatomical-coupling artifacts. Neuroscience 80:21–40PubMedCrossRefGoogle Scholar
  12. 12.
    Doyle MW, Andresen MC (2001) Reliability of monosynaptic sensory transmission in brain stem neurons in vitro. J Neurophysiol 85:2213–2223PubMedGoogle Scholar
  13. 13.
    Doyle MW, Bailey TW, Jin YH, Andresen MC (2002) Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J Neurosci 22:8222–8229PubMedGoogle Scholar
  14. 14.
    Estes ML, Block CH, Barnes KL (1989) The canine nucleus tractus solitarii: light microscopic analysis of subnuclear divisions. Brain Res Bull 23:509–517PubMedCrossRefGoogle Scholar
  15. 15.
    Faisy C, Naline E, Rouget C, Risse PA, Guerot E, Fagon JY, Chinet T, Roche N, Advenier C (2004) Nociceptin inhibits vanilloid TRPV-1-mediated neurosensitization induced by fenoterol in human isolated bronchi. Naunyn Schmiedebergs Arch Pharmacol 370:167–175PubMedCrossRefGoogle Scholar
  16. 16.
    Glaum S, Brooks P (1996) Tetanus-induced sustained potentiation of monosynaptic inhibitory transmission in the rat medulla: evidence for a presynaptic locus. J Neurophysiol 76:30–38PubMedGoogle Scholar
  17. 17.
    Gonzalez ER, Krieger AJ, Sapru HN (1983) Central resetting of baroreflex in the spontaneously hypertensive rat. Hypertension 5:346–352PubMedGoogle Scholar
  18. 18.
    Gozal D, Gozal E, Simakajornboon N (2000) Signaling pathways of the acute hypoxic ventilatory response in the nucleus tractus solitarius. Respir Physiol 121:209–221PubMedCrossRefGoogle Scholar
  19. 19.
    Gracely RH, Undem BJ, Banzett RB (2007) Cough, pain and dyspnoea: similarities and differences. Pulm Pharmacol Ther 20:433–437PubMedCrossRefGoogle Scholar
  20. 20.
    Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11:946–958PubMedCrossRefGoogle Scholar
  21. 21.
    Hara N, Minami T, Okuda-Ashitaka E, Sugimoto T, Sakai M, Onaka M, Mori H, Imanishi T, Shingu K, Ito S (1997) Characterization of nociceptin hyperalgesia and allodynia in conscious mice. Br J Pharmacol 121:401–408PubMedCrossRefGoogle Scholar
  22. 22.
    Head GA (1995) Baroreflexes and cardiovascular regulation in hypertension. J Cardiovasc Pharmacol 26 Suppl 2:S7–16Google Scholar
  23. 23.
    Heesch C, Barron K (1992) Is there a central nervous system component to acute baroreflex resetting in rats? Am J Physiol 262:H503–510PubMedGoogle Scholar
  24. 24.
    Huang RQ, Erlichman JS, Dean JB (1997) Cell–cell coupling between CO2-excited neurons in the dorsal medulla oblongata. Neuroscience 80:41–57PubMedCrossRefGoogle Scholar
  25. 25.
    Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237–1240PubMedCrossRefGoogle Scholar
  26. 26.
    Inoue M, Kawashima T, Allen RG, Ueda H (2003) Nocistatin and prepro-nociceptin/orphanin FQ 160–187 cause nociception through activation of Gi/o in capsaicin-sensitive and of Gs in capsaicin-insensitive nociceptors, respectively. J Pharmacol Exp Ther 306:141–146PubMedCrossRefGoogle Scholar
  27. 27.
    Ito S, Okuda-Ashitaka E, Imanishi T, Minami T (2000) Central roles of nociceptin/orphanin FQ and nocistatin: allodynia as a model of neural plasticity. Prog Brain Res 129:205–218PubMedCrossRefGoogle Scholar
  28. 28.
    Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705PubMedCrossRefGoogle Scholar
  29. 29.
    Jia Y, Wang X, Aponte SI, Rivelli MA, Yang R, Rizzo CA, Corboz MR, Priestley T, Hey JA (2002) Nociceptin/orphanin FQ inhibits capsaicin-induced guinea-pig airway contraction through an inward-rectifier potassium channel. Br J Pharmacol 135:764–770PubMedCrossRefGoogle Scholar
  30. 30.
    Jin YH, Bailey TW, Andresen MC (2004) Cranial afferent glutamate heterosynaptically modulates GABA release onto second-order neurons via distinctly segregated metabotropic glutamate receptors. J Neurosci 24:9332–9340PubMedCrossRefGoogle Scholar
  31. 31.
    Jin YH, Bailey TW, Li BY, Schild JH, Andresen MC (2004) Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci 24:4709–4717PubMedCrossRefGoogle Scholar
  32. 32.
    Klein T, Magerl W, Hopf HC, Sandkuhler J, Treede RD (2004) Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci 24:964–971PubMedCrossRefGoogle Scholar
  33. 33.
    Kollarik M, Dinh QT, Fischer A, Undem BJ (2003) Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse. J Physiol 551:869–879PubMedCrossRefGoogle Scholar
  34. 34.
    Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR (2006) Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol 101:618–627PubMedCrossRefGoogle Scholar
  35. 35.
    Lee LY, Pisarri TE (2001) Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol 125:47–65PubMedCrossRefGoogle Scholar
  36. 36.
    Lee LY, Shuei Lin Y, Gu Q, Chung E, Ho CY (2003) Functional morphology and physiological properties of bronchopulmonary C-fiber afferents. Anat Rec 270A:17–24CrossRefGoogle Scholar
  37. 37.
    Lu YM, Mansuy IM, Kandel ER, Roder J (2000) Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 26:197–205PubMedCrossRefGoogle Scholar
  38. 38.
    MacDonald SM, Song G, Poon CS (2007) Nonassociative learning promotes respiratory entrainment to mechanical ventilation. PLoS ONE 2:e865PubMedCrossRefGoogle Scholar
  39. 39.
    Magerl W, Fuchs PN, Meyer RA, Treede RD (2001) Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain 124:1754–1764PubMedCrossRefGoogle Scholar
  40. 40.
    Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21PubMedCrossRefGoogle Scholar
  41. 41.
    Malinowska B, Godlewski G, Schlicker E (2002) Function of nociceptin and opioid OP4 receptors in the regulation of the cardiovascular system. J Physiol Pharmacol 53:301–324PubMedGoogle Scholar
  42. 42.
    Massey PV, Bashir ZI (2007) Long-term depression: multiple forms and implications for brain function. Trends Neurosci 30:176–184PubMedCrossRefGoogle Scholar
  43. 43.
    Mathis JP, Rossi GC, Pellegrino MJ, Jimenez C, Pasternak GW, Allen RG (2001) Carboxyl terminal peptides derived from prepro-orphanin FQ/nociceptin (ppOFQ/N) are produced in the hypothalamus and possess analgesic bioactivities. Brain Res 895:89–94PubMedCrossRefGoogle Scholar
  44. 44.
    McLeod RL, Bolser DC, Jia Y, Parra LE, Mutter JC, Wang X, Tulshian DB, Egan RW, Hey JA (2002) Antitussive effect of nociceptin/orphanin FQ in experimental cough models. Pulm Pharmacol Ther 15:213–216PubMedCrossRefGoogle Scholar
  45. 45.
    Meis S (2003) Nociceptin/orphanin FQ: actions within the brain. Neuroscientist 9:158–168PubMedCrossRefGoogle Scholar
  46. 46.
    Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535PubMedCrossRefGoogle Scholar
  47. 47.
    Mifflin SW, Felder RB (1990) Synaptic mechanisms regulating cardiovascular afferent inputs to solitary tract nucleus. Am J Physiol 259:H653–661PubMedGoogle Scholar
  48. 48.
    Miles R (1986) Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro. J Neurophysiol 55:1076–1090PubMedGoogle Scholar
  49. 49.
    Okuda-Ashitaka E, Minami T, Tachibana S, Yoshihara Y, Nishiuchi Y, Kimura T, Ito S (1998) Nocistatin, a peptide that blocks nociceptin action in pain transmission. Nature 392:286–289PubMedCrossRefGoogle Scholar
  50. 50.
    Pan Z, Hirakawa N, Fields HL (2000) A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron 26:515–522PubMedCrossRefGoogle Scholar
  51. 51.
    Poon C-S, Siniaia MS (2000) Plasticity of cardiorespiratory neural processing: Classification and computational functions. Respirat Physiol 122(Special issue on Modeling and Control of Breathing):83–109CrossRefGoogle Scholar
  52. 52.
    Poon C-S, Young DL, Siniaia MS (2000) High-pass filtering of carotid-vagal influences on expiration in rat: role of N-methyl-D-aspartate receptors. Neurosci Lett 284:5–8PubMedCrossRefGoogle Scholar
  53. 53.
    Poon C-S, Zhou Z, Champagnat J (2000) NMDA receptor activity in utero averts respiratory depression and anomalous LTD in newborn mice. J Neurosci 20:RC73 (71–76)PubMedGoogle Scholar
  54. 54.
    Poon CS, Young DL (2006) Nonassociative learning as gated neural integrator and differentiator in stimulus-response pathways. Behav Brain Funct 2:29PubMedCrossRefGoogle Scholar
  55. 55.
    Potts JT (2006) Inhibitory neurotransmission in the nucleus tractus solitarii: implications for baroreflex resetting during exercise. Exp Physiol 91:59–72PubMedCrossRefGoogle Scholar
  56. 56.
    Randic M, Jiang MC, Cerne R (1993) Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J Neurosci 13:5228–5241PubMedGoogle Scholar
  57. 57.
    Raymond CR (2007) LTP forms 1, 2 and 3: different mechanisms for the “long” in long-term potentiation. Trends Neurosci 30:167–175PubMedCrossRefGoogle Scholar
  58. 58.
    Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr., Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794PubMedCrossRefGoogle Scholar
  59. 59.
    Ricco MM, Kummer W, Biglari B, Myers AC, Undem BJ (1996) Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol 496(Pt 2):521–530PubMedGoogle Scholar
  60. 60.
    Rossi GC, Pellegrino M, Shane R, Abbadie CA, Dustman J, Jimenez C, Bodnar RJ, Pasternak GW, Allen RG (2002) Characterization of rat prepro-orphanin FQ/nociceptin((154–181)): nociceptive processing in supraspinal sites. J Pharmacol Exp Ther 300:257–264PubMedCrossRefGoogle Scholar
  61. 61.
    Ruscheweyh R, Sandkuhler J (2001) Bidirectional actions of nociceptin/orphanin FQ on A delta-fibre-evoked responses in rat superficial spinal dorsal horn in vitro. Neuroscience 107:275–281PubMedCrossRefGoogle Scholar
  62. 62.
    Saper CB (2000) Pain as a visceral sensation. Prog Brain Res 122:237–243PubMedCrossRefGoogle Scholar
  63. 63.
    Sapru HN, Chitravanshi VC (2002) Responses to microinjections of endomorphin and nociceptin into the medullary cardiovascular areas. Clin Exp Pharmacol Physiol 29:243–247PubMedCrossRefGoogle Scholar
  64. 64.
    Sasamura T, Kuraishi Y (1999) Peripheral and central actions of capsaicin and VR1 receptor. Jpn J Pharmacol 80:275–280PubMedCrossRefGoogle Scholar
  65. 65.
    Shah N, Chitravanshi VC, Sapru HN (2003) Cardiovascular responses to microinjections of nociceptin into a midline area in the commissural subnucleus of the nucleus tractus solitarius of the rat. Brain Res 984:93–103PubMedCrossRefGoogle Scholar
  66. 66.
    Siniaia MS, Young DL, Poon C-S (2000) Habituation and desensitization of the Hering–Breuer reflex in rat. J Physiol (Lond) 523:479–491CrossRefGoogle Scholar
  67. 67.
    Spina D (2003) A comparison of the pharmacological modulation of hyperalgesia and bronchial hyperresponsiveness. Pulm Pharmacol Ther 16:31–44PubMedCrossRefGoogle Scholar
  68. 68.
    Szallasi A, Nilsson S, Farkas-Szallasi T, Blumberg PM, Hokfelt T, Lundberg JM (1995) Vanilloid (capsaicin) receptors in the rat: distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Res 703:175–183PubMedCrossRefGoogle Scholar
  69. 69.
    Undem BJ, Carr MJ, Kollarik M (2002) Physiology and plasticity of putative cough fibres in the Guinea pig. Pulm Pharmacol Ther 15:193–198PubMedCrossRefGoogle Scholar
  70. 70.
    Vaughan CW, Connor M, Jennings EA, Marinelli S, Allen RG, Christie MJ (2001) Actions of nociceptin/orphanin FQ and other prepronociceptin products on rat rostral ventromedial medulla neurons in vitro. J Physiol 534:849–859PubMedCrossRefGoogle Scholar
  71. 71.
    Vitela M, Mifflin SW (2001) Gamma-aminobutyric acid(B) receptor-mediated responses in the nucleus tractus solitarius are altered in acute and chronic hypertension. Hypertension 37:619–622PubMedGoogle Scholar
  72. 72.
    Young DL, Eldridge FL, Poon CS (2003) Integration-differentiation and gating of carotid afferent traffic that shapes the respiratory pattern. J Appl Physiol 94:1213–1229PubMedGoogle Scholar
  73. 73.
    Zhang LL, Ashwell KW (2001) The development of cranial nerve and visceral afferents to the nucleus of the solitary tract in the rat. Anat Embryol (Berl) 204:135–151CrossRefGoogle Scholar
  74. 74.
    Zhang LL, Ashwell KW (2001) Development of the cyto- and chemoarchitectural organization of the rat nucleus of the solitary tract. Anat Embryol (Berl) 203:265–282CrossRefGoogle Scholar
  75. 75.
    Zhang W, Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900PubMedCrossRefGoogle Scholar
  76. 76.
    Zhou Z, Champagnat J, Poon C-S (1997) Phasic and long-term depression in brainstem nucleus tractus solitarius neurons: differing roles of AMPA receptor desensitization. J Neurosci 17:5349–5356PubMedGoogle Scholar
  77. 77.
    Zhou Z, Poon C-S (2000) Field potential analysis of synaptic transmission in spiking neurons in a sparse and irregular neuronal structure in vitro. J Neurosci Methods 94:193–203PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Armenak Bantikyan
    • 1
  • Gang Song
    • 1
  • Paula Feinberg-Zadek
    • 1
  • Chi-Sang Poon
    • 1
    Email author
  1. 1.Harvard–MIT Division of Health Sciences and Technology, Bldg. E25–250Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations