Fatty acids do not activate UCP2 in pancreatic beta cells: comparison with UCP1

  • Sandrine Galetti
  • Alexandre Sarre
  • Hélène Perreten
  • Nathalie Produit-Zengaffinen
  • Patrick Muzzin
  • Françoise Assimacopoulos-JeannetEmail author
Signaling and Cell Physiology


UCP2 is expressed in pancreatic β cells where its postulated uncoupling activity will modulate glucose-induced changes in ATP/ADP ratio and insulin secretion. The consequences of UCP2 over/underexpression on β-cell function has mainly been studied in the basal state; however, a UCP has no uncoupling activity unless stimulated by fatty acids and/or reactive oxygen species. Here, UCP2 was overexpressed in INS-1 cells and parameters reflecting mitochondrial coupling measured in the basal state and after stimulation by fatty acids. For comparison, UCP1 was expressed to similar levels and the same parameters measured. Neither UCP1 expression nor UCP2 overexpression modified basal or glucose-stimulated metabolic changes. Upon addition of fatty acids, UCP1-expressing cells displayed the expected mitochondrial uncoupling effect, while UCP2 did not elicit any measurable change in mitochondrial function. Taken together, our data demonstrate that, in pancreatic β-cells, UCP2 has no uncoupling activity in the basal state or after fatty acid stimulation.


UCP2 UCP1 INS-1 cells Fatty acid-induced uncoupling Mitochondria 



We thank F. Califano for her expert technical assistance. We also thank D. Ricquier for the gift of recombinant UCP1 and J. Pakay for recombinant UCP2. This study was supported by grant 32-114134 from the Swiss National Science Foundation. The project is part of the Geneva Program for Metabolic Disorders.


  1. 1.
    Lameloise N, Muzzin P, Prentki M, Assimacopoulos-Jeannet F (2001) Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 50:803–809PubMedCrossRefGoogle Scholar
  2. 2.
    Ito E, Ozawa S, Takahashi K, Tanaka T, Katsuta H, Yamaguchi S, Maruyama M, Takizawa M, Katahira H, Yoshimoto K, Nagamatsu S, Ishida H (2004) PPAR-gamma overexpression selectively suppresses insulin secretory capacity in isolated pancreatic islets through induction of UCP-2 protein. Biochem Biophys Res Commun 324:810–814PubMedCrossRefGoogle Scholar
  3. 3.
    Patane G, Anello M, Piro S, Vigneri R, Purrello F, Rabuazzo AM (2002) Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator-activated receptor-gamma inhibition. Diabetes 51:2749–2756PubMedCrossRefGoogle Scholar
  4. 4.
    Tordjman K, Standley KN, Bernal-Mizrachi C, Leone TC, Coleman T, Kelly DP, Semenkovich CF (2002) PPARalpha suppresses insulin secretion and induces UCP2 in insulinoma cells. J Lipid Res 43:936–943PubMedGoogle Scholar
  5. 5.
    Ravnskjaer K, Boergesen M, Rubi B, Larsen JK, Nielsen T, Fridriksson J, Maechler P, Mandrup S (2005) Peroxisome proliferator-activated receptor alpha (PPARalpha) potentiates, whereas PPARgamma attenuates, glucose-stimulated insulin secretion in pancreatic beta-cells. Endocrinology 146:3266–3276PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, Lowell BB (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105:745–755PubMedCrossRefGoogle Scholar
  7. 7.
    Chan CB, De Leo D, Joseph JW, McQuaid TS, Ha XF, Xu F, Tsushima RG, Pennefather PS, Salapatek AM, Wheeler MB (2001) Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50:1302–1310PubMedCrossRefGoogle Scholar
  8. 8.
    Hong Y, Fink BD, Dillon JS, Sivitz WI (2001) Effects of adenoviral overexpression of uncoupling protein-2 and -3 on mitochondrial respiration in insulinoma cells. Endocrinology 142:249–256PubMedCrossRefGoogle Scholar
  9. 9.
    Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4:e31PubMedCrossRefGoogle Scholar
  10. 10.
    Vatamaniuk MZ, Gupta RK, Lantz KA, Doliba NM, Matschinsky FM, Kaestner KH (2006) Foxa1-deficient mice exhibit impaired insulin secretion due to uncoupled oxidative phosphorylation. Diabetes 55:2730–2736PubMedCrossRefGoogle Scholar
  11. 11.
    Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, Del Prato S, Rabuazzo AM, Purrello F, Marchetti P (2005) Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48:282–289PubMedCrossRefGoogle Scholar
  12. 12.
    Produit-Zengaffinen N, Davis-Lameloise N, Perreten H, Becard D, Gjinovci A, Keller PA, Wollheim CB, Herrera P, Muzzin P, Assimacopoulos-Jeannet F (2007) Increasing uncoupling protein-2 in pancreatic beta cells does not alter glucose-induced insulin secretion but decreases production of reactive oxygen species. Diabetologia 50:84–93PubMedCrossRefGoogle Scholar
  13. 13.
    Kjorholt C, Akerfeldt MC, Biden TJ, Laybutt DR (2005) Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes. Diabetes 54:2755–2763PubMedCrossRefGoogle Scholar
  14. 14.
    Khaldi MZ, Guiot Y, Gilon P, Henquin JC, Jonas JC (2004) Increased glucose sensitivity of both triggering and amplifying pathways of insulin secretion in rat islets cultured for 1 wk in high glucose. Am J Physiol Endocrinol Metab 287:E207–E217PubMedCrossRefGoogle Scholar
  15. 15.
    Couplan E, del Mar Gonzalez-Barroso M, Alves-Guerra MC, Ricquier D, Goubern M, Bouillaud F (2002) No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria. J Biol Chem 277:26268–26275PubMedCrossRefGoogle Scholar
  16. 16.
    Stuart JA, Harper JA, Brindle KM, Jekabsons MB, Brand MD (2001) Physiological levels of mammalian uncoupling protein 2 do not uncouple yeast mitochondria. J Biol Chem 276:18633–18639PubMedCrossRefGoogle Scholar
  17. 17.
    Nedergaard J, Cannon B (2003) The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp Physiol 88:65–84PubMedCrossRefGoogle Scholar
  18. 18.
    Cannon B, Shabalina IG, Kramarova TV, Petrovic N, Nedergaard J (2006) Uncoupling proteins: a role in protection against reactive oxygen species—or not? Biochim Biophys Acta 1757:449–458PubMedCrossRefGoogle Scholar
  19. 19.
    Bezaire V, Seifert EL, Harper ME (2007) Uncoupling protein-3: clues in an ongoing mitochondrial mystery. FASEB J 21:312–324PubMedCrossRefGoogle Scholar
  20. 20.
    Locke RM, Rial E, Scott ID, Nicholls DG (1982) Fatty acids as acute regulators of the proton conductance of hamster brown-fat mitochondria. Eur J Biochem 129:373–380PubMedCrossRefGoogle Scholar
  21. 21.
    Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408:39–42PubMedCrossRefGoogle Scholar
  22. 22.
    Wang H, Iynedjian PB (1997) Modulation of glucose responsiveness of insulinoma beta-cells by graded overexpression of glucokinase. Proc Natl Acad Sci U S A 94:4372–4377PubMedCrossRefGoogle Scholar
  23. 23.
    Herbert V, Lau KS, Gottlieb CW, Bleicher SJ (1965) Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab 25:1375–1384PubMedCrossRefGoogle Scholar
  24. 24.
    Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352PubMedCrossRefGoogle Scholar
  25. 25.
    Schultz V, Sussman I, Bokvist K, Tornheim K (1993) Bioluminometric assay of ADP and ATP at high ATP/ADP ratios: assay of ADP after enzymatic removal of ATP. Anal Biochem 215:302–304PubMedCrossRefGoogle Scholar
  26. 26.
    Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P (2004) Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145:667–678PubMedCrossRefGoogle Scholar
  27. 27.
    Rousset S, Mozo J, Dujardin G, Emre Y, Masscheleyn S, Ricquier D, Cassard-Doulcier AM (2007) UCP2 is a mitochondrial transporter with an unusual very short half-life. FEBS Lett 581:479–482PubMedCrossRefGoogle Scholar
  28. 28.
    Ranta F, Avram D, Berchtold S, Dufer M, Drews G, Lang F, Ullrich S (2006) Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 55:1380–1390PubMedCrossRefGoogle Scholar
  29. 29.
    Matthias A, Ohlson KB, Fredriksson JM, Jacobsson A, Nedergaard J, Cannon B (2000) Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis. J Biol Chem 275:25073–25081PubMedCrossRefGoogle Scholar
  30. 30.
    Larrarte E, Margareto J, Novo FJ, Marti A, Alfredo Martinez J (2002) UCP1 muscle gene transfer and mitochondrial proton leak mediated thermogenesis. Arch Biochem Biophys 404:166–171PubMedCrossRefGoogle Scholar
  31. 31.
    Casteilla L, Blondel O, Klaus S, Raimbault S, Diolez P, Moreau F, Bouillaud F, Ricquier D (1990) Stable expression of functional mitochondrial uncoupling protein in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 87:5124–5128PubMedCrossRefGoogle Scholar
  32. 32.
    Guerini D, Prati E, Desai U, Nick HP, Flammer R, Gruninger S, Cumin F, Kaleko M, Connelly S, Chiesi M (2002) Uncoupling of protein-3 induces an uncontrolled uncoupling of mitochondria after expression in muscle derived L6 cells. Eur J Biochem 269:1373–1381PubMedCrossRefGoogle Scholar
  33. 33.
    Fink BD, Hong YS, Mathahs MM, Scholz TD, Dillon JS, Sivitz WI (2002) UCP2-dependent proton leak in isolated mammalian mitochondria. J Biol Chem 277:3918–3925PubMedCrossRefGoogle Scholar
  34. 34.
    Affourtit C, Brand MD (2008) Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. Biochem J 409:199–204PubMedCrossRefGoogle Scholar
  35. 35.
    Puigserver P, Herron D, Gianotti M, Palou A, Cannon B, Nedergaard J (1992) Induction and degradation of the uncoupling protein thermogenin in brown adipocytes in vitro and in vivo. Evidence for a rapidly degradable pool. Biochem J 284(Pt 2):393–398PubMedGoogle Scholar
  36. 36.
    Rafael J, Ludolph HJ, Hohorst HJ (1969) Mitochondria from brown adipose tissue: uncoupling of respiratory chain phosphorylation by long fatty acids and recoupling by guanosine triphosphate. Hoppe Seylers Z Physiol Chem 350:1121–1131PubMedGoogle Scholar
  37. 37.
    Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415:96–99PubMedCrossRefGoogle Scholar
  38. 38.
    Di Paola M, Lorusso M (2006) Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta 1757:1330–1337PubMedCrossRefGoogle Scholar
  39. 39.
    Jimenez-Jimenez J, Ledesma A, Zaragoza P, Gonzalez-Barroso MM, Rial E (2006) Fatty acid activation of the uncoupling proteins requires the presence of the central matrix loop from UCP1. Biochim Biophys Acta 1757:1292–1296PubMedCrossRefGoogle Scholar
  40. 40.
    Beck V, Jaburek M, Demina T, Rupprecht A, Porter RK, Jezek P, Pohl EE (2007) Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J 21:1137–1144PubMedCrossRefGoogle Scholar
  41. 41.
    Mozo J, Ferry G, Studeny A, Pecqueur C, Rodriguez M, Boutin JA, Bouillaud F (2006) Expression of UCP3 in CHO cells does not cause uncoupling, but controls mitochondrial activity in the presence of glucose. Biochem J 393:431–439PubMedCrossRefGoogle Scholar
  42. 42.
    Negre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L, Casteilla L (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11:809–815PubMedGoogle Scholar
  43. 43.
    Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068PubMedCrossRefGoogle Scholar
  44. 44.
    Andrews ZB, Diano S, Horvath TL (2005) Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat Rev Neurosci 6:829–840PubMedCrossRefGoogle Scholar
  45. 45.
    Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF (2007) Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol 9:445–452PubMedCrossRefGoogle Scholar
  46. 46.
    Criscuolo F, Mozo J, Hurtaud C, Nubel T, Bouillaud F (2006) UCP2, UCP3, avUCP, what do they do when proton transport is not stimulated? Possible relevance to pyruvate and glutamine metabolism. Biochim Biophys Acta 1757:1284–1291PubMedCrossRefGoogle Scholar
  47. 47.
    Zengaffinen N, Perreten H, Lameloise N, Keller P, Muzzin P, Assimacopoulos-Jeannet F (2005) Uncoupling protein 2 overexpression prevents cytokine-induced reactive oxygen species production and apoptosis in pancreatic beta cells. Diabetologia 48:A38 (abstract)Google Scholar
  48. 48.
    Bai Y, Onuma H, Bai X, Medvedev AV, Misukonis M, Weinberg JB, Cao W, Robidoux J, Floering LM, Daniel KW, Collins S (2005) Persistent nuclear factor-kappa B activation in Ucp2−/− mice leads to enhanced nitric oxide and inflammatory cytokine production. J Biol Chem 280:19062–19069PubMedCrossRefGoogle Scholar
  49. 49.
    Emre Y, Hurtaud C, Nubel T, Criscuolo F, Ricquier D, Cassard-Doulcier AM (2007) Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem J 402:271–278PubMedCrossRefGoogle Scholar
  50. 50.
    Kizaki T, Suzuki K, Hitomi Y, Taniguchi N, Saitoh D, Watanabe K, Onoe K, Day NK, Good RA, Ohno H (2002) Uncoupling protein 2 plays an important role in nitric oxide production of lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci U S A 99:9392–9397PubMedCrossRefGoogle Scholar
  51. 51.
    Hurtaud C, Gelly C, Chen Z, Levi-Meyrueis C, Bouillaud F (2007) Glutamine stimulates translation of uncoupling protein 2mRNA. Cell Mol Life Sci 64:1853–1860PubMedCrossRefGoogle Scholar
  52. 52.
    Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B (2001) Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 276:8705–8712PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sandrine Galetti
    • 1
  • Alexandre Sarre
    • 1
  • Hélène Perreten
    • 1
  • Nathalie Produit-Zengaffinen
    • 1
  • Patrick Muzzin
    • 1
  • Françoise Assimacopoulos-Jeannet
    • 1
    Email author
  1. 1.Department of Cell Physiology and Metabolism, Medical FacultyUniversity of GenevaGeneva 4Switzerland

Personalised recommendations