Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing

Instruments and Techniques

Abstract

Elasticity of living cells is a parameter of increasing importance in cellular physiology, and the atomic force microscope is a suitable instrument to quantitatively measure it. The principle of an elasticity measurement is to physically indent a cell with a probe, to measure the applied force, and to process this force–indentation data using an appropriate model. It is crucial to know what extent the geometry of the indenting probe influences the result. Therefore, we indented living Chinese hamster ovary cells at 37°C with sharp tips and colloidal probes (spherical particle tips) of different sizes and materials. We furthermore developed an implementation of the Hertz model, which simplifies the data processing. Our results show (a) that the size of the colloidal probe does not influence the result over a wide range (radii 0.5–26 μm) and (b) indenting cells with sharp tips results in higher Young’s moduli (∼1,300 Pa) than using colloidal probes (∼400 Pa).

Keywords

Cystic fibrosis transmembrane conductance regulator Mechanical properties Force Deformability Membrane strength Mathematical model 

Notes

Acknowledgments

We thank Helga Bertram and Mike Wälte for excellent technical assistance. We thank Hugh de Wardener, St. George’s University, London, UK, and Peter Hanley for the critical reading of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft SFB 629 (A6).

References

  1. 1.
    Almqvist N, Bhatia R, Primbs G, Desai N, Banerjee S, Lal R (2004) Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys J 86:1753–1762PubMedGoogle Scholar
  2. 2.
    An SS, Fabry B, Trepat X, Wang N, Fredberg JJ (2006) Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness. Am J Respir Cell Mol Biol 35:55–64PubMedCrossRefGoogle Scholar
  3. 3.
    Bausch AR, Moller W, Sackmann E (1999) Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 76:573–579PubMedGoogle Scholar
  4. 4.
    Butt HJ (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60:1438–1444PubMedGoogle Scholar
  5. 5.
    Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7CrossRefGoogle Scholar
  6. 6.
    Cant SH, Pitcher JA (2005) G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 16:3088–3099PubMedCrossRefGoogle Scholar
  7. 7.
    Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103:15463–15468PubMedCrossRefGoogle Scholar
  8. 8.
    Charras GT, Horton MA (2002) Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys J 83:858–879PubMedCrossRefGoogle Scholar
  9. 9.
    Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum (USA) 64:403–405CrossRefGoogle Scholar
  10. 10.
    Collinsworth AM, Zhang S, Kraus WE, Truskey GA (2002) Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am J Physiol Cell Physiol 283:C1219–C1227PubMedGoogle Scholar
  11. 11.
    Cunningham CC, Gorlin JB, Kwiatkowski DJ, Hartwig JH, Janmey PA, Byers HR, Stossel TP (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255:325–327PubMedCrossRefGoogle Scholar
  12. 12.
    Domke J, Radmacher M (1998) Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14:3320–3325CrossRefGoogle Scholar
  13. 13.
    Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 253:239–241CrossRefGoogle Scholar
  14. 14.
    Dufrene YF, Hinterdorfer P (2008) Recent progress in AFM molecular recognition studies. Pflugers Arch 456:237–245PubMedCrossRefGoogle Scholar
  15. 15.
    Elson EL (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 17:397–430PubMedCrossRefGoogle Scholar
  16. 16.
    Engler AJ, Richert L, Wong JY, Picart C, Discher DE (2004) Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surface Science 570:142–154CrossRefGoogle Scholar
  17. 17.
    Feneberg W, Aepfelbacher M, Sackmann E (2004) Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers. Biophys J 87:1338–1350PubMedCrossRefGoogle Scholar
  18. 18.
    Fredberg JJ, Jones KA, Nathan M, Raboudi S, Prakash YS, Shore SA, Butler JP, Sieck GC (1996) Friction in airway smooth muscle: mechanism, latch, and implications in asthma. J Appl Physiol 81:2703–2712PubMedGoogle Scholar
  19. 19.
    Golenhofen N, Redel A, Wawrousek EF, Drenckhahn D (2006) Ischemia-induced increase of stiffness of alphaB-crystallin/HSPB2-deficient myocardium. Pflugers Arch 451:518–525PubMedCrossRefGoogle Scholar
  20. 20.
    Greger R, Schreiber R, Mall M, Wissner A, Hopf A, Briel M, Bleich M, Warth R, Kunzelmann K (2001) Cystic fibrosis and CFTR. Pflugers Arch 443(Suppl 1):S3–S7PubMedGoogle Scholar
  21. 21.
    Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698PubMedCrossRefGoogle Scholar
  22. 22.
    Hassan E, Heinz WF, Antonik MD, D’Costa NP, Nageswaran S, Schoenenberger CA, Hoh JH (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 74:1564–1578Google Scholar
  23. 23.
    Hertz H (1882) Ueber die Berührung fester elastischer Körper. Reine Angew Mathematik 92:156–171Google Scholar
  24. 24.
    Hillebrand U, Hausberg M, Lang D, Stock C, Riethmuller C, Callies C, Bussemaker E (2008) How steroid hormones act on the endothelium—insights by atomic force microscopy. Pflugers Arch 456:51–60PubMedCrossRefGoogle Scholar
  25. 25.
    Hillebrand U, Hausberg M, Stock C, Shahin V, Nikova D, Riethmuller C, Kliche K, Ludwig T, Schillers H, Schneider SW, Oberleithner H (2006) 17beta-estradiol increases volume, apical surface and elasticity of human endothelium mediated by Na+/H+ exchange. Cardiovasc Res 69:916–924PubMedCrossRefGoogle Scholar
  26. 26.
    Hillebrand U, Schillers H, Riethmuller C, Stock C, Wilhelmi M, Oberleithner H, Hausberg M (2007) Dose-dependent endothelial cell growth and stiffening by aldosterone: endothelial protection by eplerenone. J Hypertens 25:639–647PubMedCrossRefGoogle Scholar
  27. 27.
    Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355PubMedCrossRefGoogle Scholar
  28. 28.
    Hofmann UG, Rotsch C, Parak WJ, Radmacher M (1997) Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J Struct Biol 119:84–91PubMedCrossRefGoogle Scholar
  29. 29.
    Hug MJ, Thiele IE, Greger R (1997) The role of exocytosis in the activation of the chloride conductance in Chinese hamster ovary cells (CHO) stably expressing CFTR. Pflugers Arch 434:779–784PubMedCrossRefGoogle Scholar
  30. 30.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum (USA) 64:1868–1873CrossRefGoogle Scholar
  31. 31.
    Janovjak H, Struckmeier J, Muller DJ (2005) Hydrodynamic effects in fast AFM single-molecule force measurements. Eur Biophys J 34:91–96PubMedCrossRefGoogle Scholar
  32. 32.
    Kasas S, Wang X, Hirling H, Marsault R, Huni B, Yersin A, Regazzi R, Grenningloh G, Riederer B, Forro L, Dietler G, Catsicas S (2005) Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil Cytoskelet 62:124–132CrossRefGoogle Scholar
  33. 33.
    Laurent VM, Henon S, Planus E, Fodil R, Balland M, Isabey D, Gallet F (2002) Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers. J Biomech Eng 124:408–421PubMedCrossRefGoogle Scholar
  34. 34.
    Lee GY, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25:111–118PubMedCrossRefGoogle Scholar
  35. 35.
    Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316PubMedCrossRefGoogle Scholar
  36. 36.
    Leporatti S, Gerth A, Kohler G, Kohlstrunk B, Hauschildt S, Donath E (2006) Elasticity and adhesion of resting and lipopolysaccharide-stimulated macrophages. FEBS Lett 580:450–454PubMedCrossRefGoogle Scholar
  37. 37.
    Lieber SC, Aubry N, Pain J, Diaz G, Kim SJ, Vatner SF (2004) Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am J Physiol Heart Circ Physiol 287:H645–H651PubMedCrossRefGoogle Scholar
  38. 38.
    Lu YB, Franze K, Seifert G, Steinhauser C, Kirchhoff F, Wolburg H, Guck J, Janmey P, Wei EQ, Kas J, Reichenbach A (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci U S A 103:17759–17764PubMedCrossRefGoogle Scholar
  39. 39.
    Ludwig T, Kirmse R, Poole K, Schwarz US (2008) Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Arch 456:29–49PubMedCrossRefGoogle Scholar
  40. 40.
    Lundbaek JA, Birn P, Girshman J, Hansen AJ, Andersen OS (1996) Membrane stiffness and channel function. Biochemistry 35:3825–3830PubMedCrossRefGoogle Scholar
  41. 41.
    Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793PubMedCrossRefGoogle Scholar
  42. 42.
    Martens JC, Radmacher M (2008) Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch 456:95–100PubMedCrossRefGoogle Scholar
  43. 43.
    Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34:1545–1553PubMedCrossRefGoogle Scholar
  44. 44.
    Matzke R, Jacobson K, Radmacher M (2001) Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 3:607–610PubMedCrossRefGoogle Scholar
  45. 45.
    Oberleithner H (2007) Is the vascular endothelium under the control of aldosterone? Facts and hypothesis. Pflugers Arch 454:187–193PubMedCrossRefGoogle Scholar
  46. 46.
    Oberleithner H, Ludwig T, Riethmuller C, Hillebrand U, Albermann L, Schafer C, Shahin V, Schillers H (2004) Human endothelium: target for aldosterone. Hypertension 43:952–956PubMedCrossRefGoogle Scholar
  47. 47.
    Oberleithner H, Riethmuller C, Ludwig T, Shahin V, Stock C, Schwab A, Hausberg M, Kusche K, Schillers H (2006) Differential action of steroid hormones on human endothelium. J Cell Sci 119:1926–1932PubMedCrossRefGoogle Scholar
  48. 48.
    Oberleithner H, Riethmuller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M (2007) Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A 104:16281–16286PubMedCrossRefGoogle Scholar
  49. 49.
    Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567PubMedGoogle Scholar
  50. 50.
    Rico F, Roca-Cusachs P, Gavara N, Farre R, Rotger M, Navajas D (2005) Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E Stat Nonlin Soft Matter Phys 72:021914PubMedGoogle Scholar
  51. 51.
    Rocha MS, Mesquita ON (2007) New tools to study biophysical properties of single molecules and single cells. An Acad Bras Cienc 79:17–28PubMedGoogle Scholar
  52. 52.
    Rotsch C, Braet F, Wisse E, Radmacher M (1997) AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int 21:685–696PubMedCrossRefGoogle Scholar
  53. 53.
    Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci U S A 96:921–926PubMedCrossRefGoogle Scholar
  54. 54.
    Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78:520–535PubMedGoogle Scholar
  55. 55.
    Sader JE (2002) Calibration of atomic force microscope cantilevers. In: Hubbard A (ed) Encyclopedia of surface and colloid science. Marcel Dekker, New York, pp 846–856Google Scholar
  56. 56.
    Schillers H (2008) Imaging CFTR in its native environment. Pflugers Arch 456:163–177PubMedCrossRefGoogle Scholar
  57. 57.
    Schneider SW, Matzke R, Radmacher M, Oberleithner H (2004) Shape and volume of living aldosterone-sensitive cells imaged with the atomic force microscope. Methods Mol Biol 242:255–279PubMedGoogle Scholar
  58. 58.
    Schrot S, Weidenfeller C, Schaffer TE, Robenek H, Galla HJ (2005) Influence of hydrocortisone on the mechanical properties of the cerebral endothelium in vitro. Biophys J 89:3904–3910PubMedCrossRefGoogle Scholar
  59. 59.
    Shelby JP, White J, Ganesan K, Rathod PK, Chiu DT (2003) A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 100:14618–14622PubMedCrossRefGoogle Scholar
  60. 60.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57CrossRefGoogle Scholar
  61. 61.
    Sokolov I, Iyer S, Subba-Rao V, Gaikwad RM, Woodworth CD (2007) Detection of surface brush on biological cells in vitro with atomic force microscopy. Appl Phys Lett 91:023902–1–023902-3CrossRefGoogle Scholar
  62. 62.
    Trickey WR, Lee GM, Guilak F (2000) Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J Orthop Res 18:891–898PubMedCrossRefGoogle Scholar
  63. 63.
    Wang N, Stamenovic D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279:C188–C194PubMedGoogle Scholar
  64. 64.
    Zhu C, Bao G, Wang N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2:189–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Institute of Physiology IIUniversity of MünsterMünsterGermany

Personalised recommendations