Cardiac thin filament regulation

  • Tomoyoshi Kobayashi
  • Lei Jin
  • Pieter P. de TombeEmail author
Cardiovascular Physiology


Myocardial contraction is initiated upon the release of calcium into the cytosol from the sarcoplasmic reticulum following membrane depolarization. The fundamental physiological role of the heart is to pump an amount blood that is determined by the prevailing requirements of the body. The physiological control systems employed to accomplish this task include regulation of heart rate, the amount of calcium release, and the response of the cardiac myofilaments to activator calcium ions. Thin filament activation and relaxation dynamics has emerged as a pivotal regulatory system tuning myofilament function to the beat-to-beat regulation of cardiac output. Maladaptation of thin filament dynamics, in addition to dysfunctional calcium cycling, is now recognized as an important cellular mechanism causing reduced cardiac pump function in a variety of cardiac diseases. Here, we review current knowledge regarding protein–protein interactions involved in the dynamics of thin filament activation and relaxation and the regulation of these processes by protein kinase-mediated phosphorylation.


Cardiac function Actin Myocardial contractility Muscle mechanics Troponin Thin filament 



Much of our own data discussed in this review were derived from experiments that would not have been possible without the strong collaborative environment that exist within the center for cardiovascular research at UIC. Furthermore, we apologize that were not able, due to space limitations, to include many references to excellent works published by our colleagues in the field. Supported, in part, by grants from the American Heart Association and NIH grants HL62426, HL75494, HL77195, HL082923, HL22231, HL73828, HL07692, and HL072742.


  1. 1.
    Abbott MB, Dong WJ, Dvoretsky A, DaGue B, Caprioli RM, Cheung HC, Rosevear PR (2001) Modulation of cardiac troponin C-cardiac troponin I regulatory interactions by the amino-terminus of cardiac troponin I. Biochemistry 40:5992–6001PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson PA, Moore GE, Nassar RN (1988) Developmental changes in the expression of rabbit left ventricular troponin T. Circ Res 63:742–747PubMedGoogle Scholar
  3. 3.
    Anderson PAW, Greig A, Mark TM, Malouf NN, Oakeley AE, Ungerleider RM, Allen PD, Kay BK (1995) Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 76:681–686PubMedGoogle Scholar
  4. 4.
    Arteaga GM, Palmiter KA, Leiden JM, Solaro RJ (2000) Attenuation of length dependence of calcium activation in myofilaments of transgenic mouse hearts expressing slow skeletal troponin I. J Physiol 526(Pt 3):541–549PubMedCrossRefGoogle Scholar
  5. 5.
    Belin RJ, Sumandea MP, Allen EJ, Schoenfelt K, Wang H, Solaro RJ, de Tombe PP (2007) Augmented protein kinase C-alpha-induced myofilament protein phosphorylation contributes to myofilament dysfunction in experimental congestive heart failure. Circ Res 101:195–204PubMedCrossRefGoogle Scholar
  6. 6.
    Belin RJ, Sumandea MP, Kobayashi T, Walker LA, Rundell VL, Urboniene D, Yuzhakova M, Ruch SH, Geenen DL, Solaro RJ, de Tombe PP (2006) Left ventricular myofilament dysfunction in rat experimental hypertrophy and congestive heart failure. Am J Physiol 291:H2344–H2353Google Scholar
  7. 7.
    Bers DM (2001) Excitation–contraction coupling and cardiac contractile force. Kluwer Academic, Dordrecht, The NetherlandsGoogle Scholar
  8. 8.
    Biesiadecki BJ, Chong SM, Nosek TM, Jin JP (2007) Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry 46:1368–1379PubMedCrossRefGoogle Scholar
  9. 9.
    Biesiadecki BJ, Kobayashi T, Walker JS, John Solaro R, de Tombe PP (2007) The troponin C G159D mutation blunts myofilament desensitization induced by troponin I Ser23/24 phosphorylation. Circ Res 100:1486–1493PubMedCrossRefGoogle Scholar
  10. 10.
    Blumenschein TM, Stone DB, Fletterick RJ, Mendelson RA, Sykes BD (2006) Dynamics of the C-terminal region of TnI in the troponin complex in solution. Biophys J 90:2436–2444PubMedCrossRefGoogle Scholar
  11. 11.
    Burkart EM, Sumandea MP, Kobayashi T, Nili M, Martin AF, Homsher E, Solaro RJ (2003) Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. J Biol Chem 278:11265–11272PubMedCrossRefGoogle Scholar
  12. 12.
    Craig R, Lehman W (2001) Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. J Mol Biol 311:1027–1036PubMedCrossRefGoogle Scholar
  13. 13.
    Davis JP, Norman C, Kobayashi T, Solaro RJ, Swartz DR, Tikunova SB (2007) Effects of thin and thick filament proteins on calcium binding and exchange with cardiac troponin C. Biophys J 92:3195–3206PubMedCrossRefGoogle Scholar
  14. 14.
    Day SM, Westfall MV, Fomicheva EV, Hoyer K, Yasuda S, La Cross NC, D’Alecy LG, Ingwall JS, Metzger JM (2006) Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat Med 12:181–189PubMedCrossRefGoogle Scholar
  15. 15.
    de Tombe PP (1998) Altered contractile function in heart failure. Review. Cardiovasc Res 37:367–380PubMedCrossRefGoogle Scholar
  16. 16.
    de Tombe PP, Solaro RJ (2000) Integration of cardiac myofilament activity and regulation with pathways signaling hypertrophy and failure. Ann Biomed Eng 28:991–1001PubMedCrossRefGoogle Scholar
  17. 17.
    de Tombe PP, Stienen GJ (1995) Protein kinase A does not alter economy of force maintenance in skinned rat cardiac trabeculae. Circ Res 76:734–741PubMedGoogle Scholar
  18. 18.
    Engel PL, Kobayashi T, Biesiadecki B, Davis J, Tikunova S, Wu S, Solaro RJ (2007) Identification of a region of troponin I important in signaling cross-bridge-dependent activation of cardiac myofilaments. J Biol Chem 282:183–193PubMedCrossRefGoogle Scholar
  19. 19.
    Farman GP, Allen EJ, Gore D, Irving TC, de Tombe PP (2007) Interfilament spacing is preserved during sarcomere length isometric contractions in rat cardiac trabeculae. Biophys J 92:L73–L75PubMedCrossRefGoogle Scholar
  20. 20.
    Farman GP, Walker JS, de Tombe PP, Irving TC (2006) Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium. Am J Physiol 291:H1847–H1855Google Scholar
  21. 21.
    Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–193PubMedCrossRefGoogle Scholar
  22. 22.
    Gomes AV, Potter JD (2004) Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. Mol Cell Biochem 263:99–114PubMedCrossRefGoogle Scholar
  23. 23.
    Gomes AV, Venkatraman G, Davis JP, Tikunova SB, Engel P, Solaro RJ, Potter JD (2004) Cardiac troponin T isoforms affect the Ca2 sensitivity of force development in the presence of slow skeletal troponin I: insights into the role of troponin T isoforms in the fetal heart. J Biol Chem 279:49579–49587PubMedCrossRefGoogle Scholar
  24. 24.
    Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924PubMedGoogle Scholar
  25. 25.
    Greene LE, Eisenberg E (1980) Cooperative binding of myosin subfragment-1 to the actin–troponin–tropomyosin complex. Proc Natl Acad Sci USA 77:2616–2620PubMedCrossRefGoogle Scholar
  26. 26.
    Greenfield NJ, Huang YJ, Swapna GV, Bhattacharya A, Rapp B, Singh A, Montelione GT, Hitchcock-DeGregori SE (2006) Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. J Mol Biol 364:80–96PubMedCrossRefGoogle Scholar
  27. 27.
    Hamdani N, Kooij V, van Dijk S, Merkus D, Paulus WJ, Dos Remedios C, Duncker DJ, Stienen GJ, van der Velden J (2008) Sarcomeric dysfunction in heart failure. Cardiovasc Res 77:649–658PubMedCrossRefGoogle Scholar
  28. 28.
    Haworth RS, Cuello F, Herron TJ, Franzen G, Kentish JC, Gautel M, Avkiran M (2004) Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function. Circ Res 95:1091–1099PubMedCrossRefGoogle Scholar
  29. 29.
    Heeley DH, Belknap B, White HD (2006) Maximal activation of skeletal muscle thin filaments requires both rigor myosin S1 and calcium. J Biol Chem 281:668–676PubMedCrossRefGoogle Scholar
  30. 30.
    Heeley DH, Watson MH, Mak AS, Dubord P, Smillie LB (1989) Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle alpha alpha-tropomyosin. J Biol Chem 264:2424–2430PubMedGoogle Scholar
  31. 31.
    Hill TL, Eisenberg E, Greene L (1980) Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin–troponin–tropomyosin complex. Proc Natl Acad Sci USA 77:3186–3190PubMedCrossRefGoogle Scholar
  32. 32.
    Hoffman RM, Blumenschein TM, Sykes BD (2006) An interplay between protein disorder and structure confers the Ca2 regulation of striated muscle. J Mol Biol 361:625–633PubMedCrossRefGoogle Scholar
  33. 33.
    Howarth JW, Meller J, Solaro RJ, Trewhella J, Rosevear PR (2007) Phosphorylation-dependent conformational transition of the cardiac specific N-extension of troponin I in cardiac troponin. J Mol Biol 373:706–722PubMedCrossRefGoogle Scholar
  34. 34.
    Hussan J, de Tombe PP, Rice JJ (2006) A spatially detailed myofilament model as a basis for large-scale biological simulations. IBM J Res Develop 50:583–600CrossRefGoogle Scholar
  35. 35.
    Janssen PM, de Tombe PP (1997) Protein kinase A does not alter unloaded velocity of sarcomere shortening in skinned rat cardiac trabeculae. Am J Physiol 273:H2415–H2422PubMedGoogle Scholar
  36. 36.
    Jaquet K, Lohmann K, Czisch M, Holak T, Gulati J, Jaquet R (1998) A model for the function of the bisphosphorylated heart-specific troponin-I N-terminus. J Muscle Res Cell Motil 19:647–659PubMedCrossRefGoogle Scholar
  37. 37.
    Kobayashi T, Solaro RJ (2005) Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 67:39–67PubMedCrossRefGoogle Scholar
  38. 38.
    Kobayashi T, Solaro RJ (2006) Increased Ca2 affinity of cardiac thin filaments reconstituted with cardiomyopathy-related mutant cardiac troponin I. J Biol Chem 281:13471–13477PubMedCrossRefGoogle Scholar
  39. 39.
    Kobayashi T, Yang X, Walker LA, Van Breemen RB, Solaro RJ (2005) A non-equilibrium isoelectric focusing method to determine states of phosphorylation of cardiac troponin I: identification of Ser-23 and Ser-24 as significant sites of phosphorylation by protein kinase C. J Mol Cell Cardiol 38:213–218PubMedCrossRefGoogle Scholar
  40. 40.
    Konhilas JP, Irving TC, De Tombe PP (2002) Frank–Starling law of the heart and the cellular mechanisms of length-dependent activation. Pflugers Arch 445:305–310PubMedCrossRefGoogle Scholar
  41. 41.
    Konhilas JP, Irving TC, de Tombe PP (2002) Length-dependent activation in three striated muscle types of the rat. J Physiol 544:225–236PubMedCrossRefGoogle Scholar
  42. 42.
    Konhilas JP, Irving TC, Wolska BM, Jweied EE, Martin AF, Solaro RJ, de Tombe PP (2003) Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing. J Physiol 547:951–961PubMedCrossRefGoogle Scholar
  43. 43.
    Kruger M, Kohl T, Linke WA (2006) Developmental changes in passive stiffness and myofilament Ca2 sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol 291:H496–H506Google Scholar
  44. 44.
    Kruger M, Zittrich S, Redwood C, Blaudeck N, James J, Robbins J, Pfitzer G, Stehle R (2005) Effects of the mutation R145G in human cardiac troponin I on the kinetics of the contraction-relaxation cycle in isolated cardiac myofibrils. J Physiol 564:347–357PubMedCrossRefGoogle Scholar
  45. 45.
    Mathur MC, Kobayashi T, Chalovich JM (2008) Negative charges at protein kinase C sites of troponin I stabilize the inactive state of actin. Biophys J 94:542–549PubMedCrossRefGoogle Scholar
  46. 46.
    Maytum R, Westerdorf B, Jaquet K, Geeves MA (2003) Differential regulation of the actomyosin interaction by skeletal and cardiac troponin isoforms. J Biol Chem 278:6696–6701PubMedCrossRefGoogle Scholar
  47. 47.
    McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701PubMedGoogle Scholar
  48. 48.
    Montgomery DE, Wolska BM, Pyle WG, Roman BB, Dowell JC, Buttrick PM, Koretsky AP, Del Nido P, Solaro RJ (2002) Alpha-adrenergic response and myofilament activity in mouse hearts lacking PKC phosphorylation sites on cardiac TnI. Am J Physiol 282:H2397–2405Google Scholar
  49. 49.
    Morimoto S (2008) Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc Res 77:659–666PubMedCrossRefGoogle Scholar
  50. 50.
    Murakami K, Yumoto F, Ohki SY, Yasunaga T, Tanokura M, Wakabayashi T (2005) Structural basis for Ca2+regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. J Mol Biol 352:178–201PubMedCrossRefGoogle Scholar
  51. 51.
    Narolska NA, Piroddi N, Belus A, Boontje NM, Scellini B, Deppermann S, Zaremba R, Musters RJ, dos Remedios C, Jaquet K, Foster DB, Murphy AM, van Eyk JE, Tesi C, Poggesi C, van der Velden J, Stienen GJ (2006) Impaired diastolic function after exchange of endogenous troponin I with C-terminal truncated troponin I in human cardiac muscle. Circ Res 99:1012–1020PubMedCrossRefGoogle Scholar
  52. 52.
    Nassar R, Malouf NN, Kelly MB, Oakeley AE, Anderson PA (1991) Force-pCa relation and troponin T isoforms of rabbit myocardium. Circ Res 69:1470–1475PubMedGoogle Scholar
  53. 53.
    Noland TA Jr, Kuo JF (1991) Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2()-stimulated actomyosin MgATPase activity. J Biol Chem 266:4974–4978PubMedGoogle Scholar
  54. 54.
    Pan BS, Gordon AM, Luo ZX (1989) Removal of tropomyosin overlap modifies cooperative binding of myosin S-1 to reconstituted thin filaments of rabbit striated muscle. J Biol Chem 264:8495–8498PubMedGoogle Scholar
  55. 55.
    Pirani A, Vinogradova MV, Curmi PM, King WA, Fletterick RJ, Craig R, Tobacman LS, Xu C, Hatch V, Lehman W (2006) An atomic model of the thin filament in the relaxed and Ca2+activated states. J Mol Biol 357:707–717PubMedCrossRefGoogle Scholar
  56. 56.
    Pirani A, Xu C, Hatch V, Craig R, Tobacman LS, Lehman W (2005) Single particle analysis of relaxed and activated muscle thin filaments. J Mol Biol 346:761–772PubMedCrossRefGoogle Scholar
  57. 57.
    Poole KJ, Lorenz M, Evans G, Rosenbaum G, Pirani A, Craig R, Tobacman LS, Lehman W, Holmes KC (2006) A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J Struct Biol 155:273–284PubMedCrossRefGoogle Scholar
  58. 58.
    Pyle WG, Sumandea MP, Solaro RJ, De Tombe PP (2002) Troponin I serines 43/45 and regulation of cardiac myofilament function. Am J Physiol 283:H1215–H1224Google Scholar
  59. 59.
    Reiffert SU, Jaquet K, Heilmeyer LM Jr, Ritchie MD, Geeves MA (1996) Bisphosphorylation of cardiac troponin I modulates the Ca(2)-dependent binding of myosin subfragment S1 to reconstituted thin filaments. FEBS Lett 384:43–47PubMedCrossRefGoogle Scholar
  60. 60.
    Rice JJ, Wang F, Bers DM, de Tombe PP (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J (in press)Google Scholar
  61. 61.
    Robinson P, Griffiths PJ, Watkins H, Redwood CS (2007) Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res 101:1266–1273PubMedCrossRefGoogle Scholar
  62. 62.
    Roman BB, Goldspink PH, Spaite E, Urboniene D, McKinney R, Geenen DL, Solaro RJ, Buttrick PM (2004) Inhibition of PKC phosphorylation of cTnI improves cardiac performance in vivo. Am J Physiol 286:H2089–H2095Google Scholar
  63. 63.
    Saeki Y, Kobayashi T, Minamisawa S, Sugi H (1997) Protein kinase A increases the tension cost and unloaded shortening velocity in skinned rat cardiac muscle. J Mol Cell Cardiol 29:1655–1663PubMedCrossRefGoogle Scholar
  64. 64.
    Sano K, Maeda K, Oda T, Maeda Y (2000) The effect of single residue substitutions of serine-283 on the strength of head-to-tail interaction and actin binding properties of rabbit skeletal muscle alpha-tropomyosin. J Biochem 127:1095–1102PubMedGoogle Scholar
  65. 65.
    Schaertl S, Lehrer SS, Geeves MA (1995) Separation and characterization of the two functional regions of troponin involved in muscle thin filament regulation. Biochemistry 34:15890–15894PubMedCrossRefGoogle Scholar
  66. 66.
    Schmidtmann A, Lindow C, Villard S, Heuser A, Mugge A, Gessner R, Granier C, Jaquet K (2005) Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C. FEBS J 272:6087–6097PubMedCrossRefGoogle Scholar
  67. 67.
    Solaro RJ, de Tombe PP (2008) Review focus series: sarcomeric proteins as key elements in integrated control of cardiac function. Cardiovasc Res 77:616–618PubMedCrossRefGoogle Scholar
  68. 68.
    Solaro RJ, Lee JA, Kentish JC, Allen DG (1988) Effects of acidosis on ventricular muscle from adult and neonatal rats. Circ Res 63:779–787PubMedGoogle Scholar
  69. 69.
    Solaro RJ, Moir AJ, Perry SV (1976) Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature 262:615–617PubMedCrossRefGoogle Scholar
  70. 70.
    Solaro RJ, Rosevear PR, Kobayashi T (2008) The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation. Biochemical Biophysical Research Communications 369:82–87CrossRefGoogle Scholar
  71. 71.
    Strang KT, Sweitzer NK, Greaser ML, Moss RL (1994) b-Adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats. Circ Res 74:542–549PubMedGoogle Scholar
  72. 72.
    Sumandea MP, Burkart EM, Kobayashi T, De Tombe PP, Solaro RJ (2004) Molecular and integrated biology of thin filament protein phosphorylation in heart muscle. Ann N Y Acad Sci 1015:39–52PubMedCrossRefGoogle Scholar
  73. 73.
    Sumandea MP, Pyle WG, Kobayashi T, de Tombe PP, Solaro RJ (2003) Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T. J Biol Chem 278:35135–35144PubMedCrossRefGoogle Scholar
  74. 74.
    Tachampa K, Kobayashi T, Wang H, Martin AF, Biesiadecki BJ, Solaro RJ, de Tombe PP (2008) Increased crossbridge cycling kinetics after exchange of C-terminal truncated troponin-I in skinned rat cardiac muscle. J Biol Chem (in press)Google Scholar
  75. 75.
    Tachampa K, Wang H, Farman GP, de Tombe PP (2007) Cardiac troponin I threonine 144: role in myofilament length dependent activation. Circ Res 101:1081–1083PubMedCrossRefGoogle Scholar
  76. 76.
    Tardiff JC (2005) Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev 10:237–248PubMedCrossRefGoogle Scholar
  77. 77.
    Tobacman LS, Butters CA (2000) A new model of cooperative myosin-thin filament binding. J Biol Chem 275:27587–27593PubMedGoogle Scholar
  78. 78.
    Tregear RT, Reedy MC, Goldman YE, Taylor KA, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Reedy MK (2004) Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys J 86:3009–3019PubMedGoogle Scholar
  79. 79.
    Vahebi S, Ota A, Li M, Warren CM, de Tombe PP, Wang Y, Solaro RJ (2007) p38-MAPK induced dephosphorylation of alpha-tropomyosin is associated with depression of myocardial sarcomeric tension and ATPase activity. Circ Res 100:408–415PubMedCrossRefGoogle Scholar
  80. 80.
    Van Eyk JE, Powers F, Law W, Larue C, Hodges RS, Solaro RJ (1998) Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa–force relation. Circ Res 82:261–271PubMedGoogle Scholar
  81. 81.
    Wang H, Grant JE, Doede CM, Sadayappan S, Robbins J, Walker JW (2006) PKC-betaII sensitizes cardiac myofilaments to Ca2 by phosphorylating troponin I on threonine-144. J Mol Cell Cardiol 41:823–833PubMedCrossRefGoogle Scholar
  82. 82.
    Ward DG, Brewer SM, Gallon CE, Gao Y, Levine BA, Trayer IP (2004) NMR and mutagenesis studies on the phosphorylation region of human cardiac troponin I. Biochemistry 43:5772–5781PubMedCrossRefGoogle Scholar
  83. 83.
    White SP, Cohen C, Phillips GN Jr (1987) Structure of co-crystals of tropomyosin and troponin. Nature 325:826–828PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang Z, Biesiadecki BJ, Jin JP (2006) Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mu-calpain cleavage. Biochemistry 45:11681–11694PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tomoyoshi Kobayashi
    • 1
  • Lei Jin
    • 1
  • Pieter P. de Tombe
    • 1
    • 2
    Email author
  1. 1.Center for Cardiovascular Research, Department of Physiology & BiophysicsUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Physiology & BiophysicsUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations