Reciprocal modulation of I h and I TASK in thalamocortical relay neurons by halothane

  • Thomas BuddeEmail author
  • Philippe Coulon
  • Matthias Pawlowski
  • Patrick Meuth
  • Tatyana Kanyshkova
  • Ansgar Japes
  • Sven G. Meuth
  • Hans-Christian Pape
Cellular Neurophysiology


By combining electrophysiological, immunohistochemical, and computer modeling techniques, we examined the effects of halothane on the standing outward current (I SO) and the hyperpolarization-activated current (I h) in rat thalamocortical relay (TC) neurons of the dorsal lateral geniculate nucleus (dLGN). Hyperpolarizing voltage steps elicited an instantaneous current component (I i) followed by a slower time-dependent current that represented I h. Halothane reduced I h by shifting the voltage dependency of activation toward more negative potentials and by reducing the maximal conductance. Moreover, halothane augmented I i and I SO. During the blockade of I h through Cs+, the current–voltage relationship of the halothane-sensitive current closely resembled the properties of a current through members of the TWIK-related acid-sensitive K+ (TASK) channel family (I TASK). Computer simulations in a single-compartment TC neuron model demonstrated that the modulation of I h and I TASK is sufficient to explain the halothane-induced hyperpolarization of the membrane potential observed in current clamp recordings. Immunohistochemical staining revealed protein expression of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel proteins HCN1, HCN2, and HCN4. Together with the dual effect of halothane on I h properties, these results suggest that I h in TC neurons critically depends on HCN1/HCN2 heterodimers. It is concluded that the reciprocal modulation of I h and I TASK is an important mechanism of halothane action in the thalamus.


TC neurons Anesthetic Halothane HCN TASK 



The authors wish to thank E. Naß and A. Jahn for the excellent technical assistance. We also wish to thank Prof. J. Andersson for his kind help with the gas chromatography and Prof. E. Pogatzki-Zahn for kindly providing the sevoflurane. This study was supported by DFG (BU 1019/7-1; Pa 336/17-1), Innovative Medizinische Forschung (IMF; BU 120501), and Interdisziplinäres Zentrum für Klinische Forschung (IZKF; Bud/005/07 to TB; A-54 to SGM).


  1. 1.
    Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, Moroni A, Baruscotti M, DiFrancesco D (2003) Heteromeric HCN1–HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J Physiol (Lond) 549:347–359CrossRefGoogle Scholar
  2. 2.
    Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep–wake regulation. Prog Neurobiol 73:379–396PubMedCrossRefGoogle Scholar
  3. 3.
    Budde T, Biella G, Munsch T, Pape H-C (1997) Lack of regulation by intracellular Ca2+ of the hyperpolarization-activated cation current in rat thalamic neurons. J Physiol (Lond) 503.1:79–85CrossRefGoogle Scholar
  4. 4.
    Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape HC (2005) Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci 25:9871–9882PubMedCrossRefGoogle Scholar
  5. 5.
    Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124PubMedCrossRefGoogle Scholar
  6. 6.
    Chen X, Sirois JE, Lei Q, Talley EM, Lynch C III, Bayliss DA (2005) HCN subunit-specific and cAMP-modulated effects of anesthetics on neuronal pacemaker currents. J Neurosci 25:5803–5814PubMedCrossRefGoogle Scholar
  7. 7.
    Day M, Carr DB, Ulrich S, Ilijic E, Tkatch T, Surmeier DJ (2005) Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci 25:8776–8787PubMedCrossRefGoogle Scholar
  8. 8.
    Detsch O, Kochs E, Siemers M, Bromm B, Vahle-Hinz C (2002) Differential effects of isoflurane on excitatory and inhibitory synaptic inputs to thalamic neurones in vivo. Br J Anaesth 89:294–300PubMedCrossRefGoogle Scholar
  9. 9.
    Dilger JP, Vidal AM, Mody AI, Liu Y (1994) Evidence for direct actions of general anesthetics on an ion channel protein. A new look at a unified mechanism of action. Anesthesiology 81:431–442PubMedCrossRefGoogle Scholar
  10. 10.
    Fanselow EE, Sameshima K, Baccala LA, Nicolelis MA (2001) Thalamic bursting in rats during different awake behavioral states. Proc Natl Acad Sci U S A 98:15330–15335PubMedCrossRefGoogle Scholar
  11. 11.
    Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaethesia. Nature 367:607–614PubMedCrossRefGoogle Scholar
  12. 12.
    Franks NP, Lieb WR (1998) Which molecular targets are most relevant to general anaesthesia? Toxicol Lett 100–101:1–8PubMedCrossRefGoogle Scholar
  13. 13.
    Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K(+) channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695PubMedCrossRefGoogle Scholar
  14. 14.
    Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123–135PubMedCrossRefGoogle Scholar
  15. 15.
    Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261PubMedCrossRefGoogle Scholar
  16. 16.
    Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373–1383PubMedGoogle Scholar
  17. 17.
    Jones MV, Harrison NL (1993) Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol 70:1339–1349PubMedGoogle Scholar
  18. 18.
    Linden A-M, Aller MI, Leppa E, Vekovischeva O, Aitta-aho T, Veale EL, Mathie A, Rosenberg P, Wisden W, Korpi ER (2006) The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the {alpha}2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmacol Exp Ther 317:615–626PubMedCrossRefGoogle Scholar
  19. 19.
    Linden A-M, Sandu C, Aller MI, Vekovischeva OY, Rosenberg PH, Wisden W, Korpi ER (2007) TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J Pharmacol Exp Ther 323:924–934PubMedCrossRefGoogle Scholar
  20. 20.
    Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224PubMedCrossRefGoogle Scholar
  21. 21.
    Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696PubMedCrossRefGoogle Scholar
  22. 22.
    McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388PubMedCrossRefGoogle Scholar
  23. 23.
    McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400PubMedGoogle Scholar
  24. 24.
    McCormick DA, Pape H-C (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol (Lond) 431:291–318Google Scholar
  25. 25.
    Meuth P, Meuth SG, Jacobi D, Broicher T, Pape HC, Budde T (2005) Get the rhythm: modeling of neuronal activity. Journal of Undergraduate Neuroscience Education 4(1):A1–A11Google Scholar
  26. 26.
    Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Kleinschnitz C, Pape HC, Wiendl H, Wisden W, Budde T (2006a) The contribution of TASK-1-containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Mol Pharmacol 69:1468–1476PubMedCrossRefGoogle Scholar
  27. 27.
    Meuth SG, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape H-C (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 23:6460–6469PubMedGoogle Scholar
  28. 28.
    Meuth SG, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape HC, Budde T (2006b) The membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. J Neurophysiol 96:1517–1529PubMedCrossRefGoogle Scholar
  29. 29.
    Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL (1997) Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389:385–389PubMedCrossRefGoogle Scholar
  30. 30.
    Mikulec AA, Pittson S, Amagasu SM, Monroe FA, MacIver MB (1998) Halothane depresses action potential conduction in hippocampal axons. Brain Res 796:231–238PubMedCrossRefGoogle Scholar
  31. 31.
    Monteggia LM, Eisch AJ, Tang MD, Kaczmarek LK, Nestler EJ (2000) Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res Mol Brain Res 81:129–139PubMedCrossRefGoogle Scholar
  32. 32.
    Much B, Wahl-Schott C, Zong X, Schneider A, Baumann L, Moosmang S, Ludwig A, Biel M (2003) Role of subunit heteromerization and N-linked glycosylation in the formation of functional hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem 278:43781–43786PubMedCrossRefGoogle Scholar
  33. 33.
    Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M (2002) The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci 5:979–984PubMedCrossRefGoogle Scholar
  34. 34.
    Pape H-C (1992) Adenosine promotes burst activity in guinea-pig geniculocortical neurones through two different ionic mechanisms. J Physiol (Lond) 447:729–753Google Scholar
  35. 35.
    Pape H-C (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327PubMedCrossRefGoogle Scholar
  36. 36.
    Pape HC, Kanyshkova T, Broicher T, Budde T (2007) Developmental and functional profile of the thalamic hyperpolarization-activated cation current, I h, in absence epilepsy. Thalamus & Related Systems DOI  10.1017/S1472928807000180
  37. 37.
    Patel A, Lazdunski M (2004) The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch 448:261–273PubMedCrossRefGoogle Scholar
  38. 38.
    Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426PubMedCrossRefGoogle Scholar
  39. 39.
    Pearce RA (1996) Volatile anaesthetic enhancement of paired-pulse depression investigated in the rat hippocampus in vitro. J Physiol (Lond) 492:823–840Google Scholar
  40. 40.
    Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D (2002) Adenosine and sleep. Sleep Med Rev 6:321–332PubMedCrossRefGoogle Scholar
  41. 41.
    Rajan S, Wischmeyer E, Karschin C, Preisig-Muller R, Grzeschik K-H, Daut J, Karschin A, Derst C (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276:7302–7311PubMedCrossRefGoogle Scholar
  42. 42.
    Ries CR, Puil E (1999a) Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 81:1795–1801PubMedGoogle Scholar
  43. 43.
    Ries CR, Puil E (1999b) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81:1802–1809PubMedGoogle Scholar
  44. 44.
    Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB (1999) Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci U S A 96:9391–9396PubMedCrossRefGoogle Scholar
  45. 45.
    Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395PubMedGoogle Scholar
  46. 46.
    Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic Press, San DiegoGoogle Scholar
  47. 47.
    Sirois JE, Lei Q, Talley EM, Lynch C 3rd, Bayliss DA (2000) The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 20:6347–6354PubMedGoogle Scholar
  48. 48.
    Sirois JE, Lynch C 3rd, Bayliss DA (2002) Convergent and reciprocal modulation of a leak K+ current and I h by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J Physiol (Lond) 541:717–729CrossRefGoogle Scholar
  49. 49.
    Steriade M (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb Cortex 7:583–604PubMedCrossRefGoogle Scholar
  50. 50.
    Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Sugiyama K, Muteki T, Shimoji K (1992) Halothane-induced hyperpolarization and depression of postsynaptic potentials of guinea pig thalamic neurons in vitro. Brain Res 576:97–103PubMedCrossRefGoogle Scholar
  52. 52.
    Talley EM, Bayliss DA (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels. Volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 277:17733–17742PubMedCrossRefGoogle Scholar
  53. 53.
    Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505PubMedGoogle Scholar
  54. 54.
    Triner L, Vulliemoz Y, Woo S-Y, Verosky M (1980) Halothane effect on cAMP generation and hydrolysis in rat brain. Eur J Pharmacol 66:73–80PubMedCrossRefGoogle Scholar
  55. 55.
    Trudell JR, Bertaccini E (2002) Molecular modelling of specific and non-specific anaesthetic interactions. Br J Anaesth 89:32–40PubMedCrossRefGoogle Scholar
  56. 56.
    Tung A, Mendelson WB (2004) Anesthesia and sleep. Sleep Med Rev 8:213–225PubMedCrossRefGoogle Scholar
  57. 57.
    Vahle-Hinz C, Detsch O, Siemers M, Kochs E (2007) Contributions of GABAergic and glutamatergic mechanisms to isoflurane-induced suppression of thalamic somatosensory information transfer. Exp Brain Res 176:159–172PubMedCrossRefGoogle Scholar
  58. 58.
    Weyand TG, Boudreaux M, Guido W (2001) Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J Neurophysiol 85:1107–1118PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thomas Budde
    • 1
    Email author
  • Philippe Coulon
    • 1
  • Matthias Pawlowski
    • 1
  • Patrick Meuth
    • 1
  • Tatyana Kanyshkova
    • 1
  • Ansgar Japes
    • 2
  • Sven G. Meuth
    • 3
  • Hans-Christian Pape
    • 1
  1. 1.Institut für Physiologie IWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterMünsterGermany
  3. 3.Klinik für NeurologieJulius-Maximilians-Universität WürzburgWürzburgGermany

Personalised recommendations