Pflügers Archiv - European Journal of Physiology

, Volume 456, Issue 6, pp 1199–1206 | Cite as

Discovery of protein-palmitoylating enzymes

  • Ryouhei Tsutsumi
  • Yuko Fukata
  • Masaki FukataEmail author
Signaling and Cell Physiology


Posttranslational modification provides proteins with additional function and regulatory control beyond genomic information, allowing cells to maintain homeostasis and respond to extracellular signals. Protein palmitoylation, the common posttranslational modification with the lipid palmitate, plays a pivotal role in protein trafficking and function. Palmitoylation is unique in that it is reversible and dynamically regulated by specific extracellular signals. The reversible nature of protein palmitoylation enables proteins to shuttle between intracellular compartments upon extracellular signals. However, the molecular mechanisms of protein palmitoylation have long been elusive, mostly because the enzymes responsible for protein palmitoylation were unknown. Recently, genetically conserved DHHC family proteins have emerged as palmitoyl-acyl transferases. With the identification of specific enzymes for palmitoylated proteins, including H-Ras, PSD-95, and eNOS, the specificity and regulatory mechanism of DHHC enzymes are beginning to be clarified.


Protein palmitoylation DHHC protein Lipid modification Protein targeting Palmitoyl-acyl transferase 



We thank Dr. Catherine H. Berlot of the Weis Center for Research for kind gifts of Gαq-GFP plasmids, Dr. David S. Bredt of Eli Lilly and company for helpful suggestions and Dr. Jun Noritake for reading the manuscript. R.T. is supported by the Japan Society for the Promotion of Science. Y.F. is supported by the Human Frontier Science Program (HFSP) and Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (grant no. 18700376). M.F. is supported by grants from the HFSP, MEXT (nos. 18022054, 18057032, and 18687008) and the Ministry of Health, Labour and Welfare of Japan (no. 17C-2).


  1. 1.
    Bartels DJ, Mitchell DA, Dong X, Deschenes RJ (1999) Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol Cell Biol 19:6775–6787PubMedGoogle Scholar
  2. 2.
    Chen WY, Shi YY, Zheng YL, Zhao XZ, Zhang GJ, Chen SQ, Yang PD, He L (2004) Case-control study and transmission disequilibrium test provide consistent evidence for association between schizophrenia and genetic variation in the 22q11 gene ZDHHC8. Hum Mol Genet 13:2991–2995PubMedCrossRefGoogle Scholar
  3. 3.
    Drisdel RC, Green WN (2004) Labeling and quantifying sites of protein palmitoylation. Biotechniques 36:276–285PubMedGoogle Scholar
  4. 4.
    Duncan JA, Gilman AG (1996) Autoacylation of G protein alpha subunits. J Biol Chem 271:23594–23600PubMedCrossRefGoogle Scholar
  5. 5.
    El-Husseini Ael-D, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3:791–802CrossRefGoogle Scholar
  6. 6.
    El-Husseini Ael-D, Schnell E, Dakoji S, Sweeney N, Zhou Q, Prange O, Gauthier-Campbell C, Aguilera-Moreno A, Nicoll RA, Bredt DS (2002) Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108:849–863CrossRefGoogle Scholar
  7. 7.
    Fang C, Deng L, Keller CA, Fukata M, Fukata Y, Chen G, Luscher B (2006) GODZ-mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses. J Neurosci 26:12758–12768PubMedCrossRefGoogle Scholar
  8. 8.
    Fernández-Hernando C, Fukata M, Bernatchez PN, Fukata Y, Lin MI, Bredt DS, Sessa WC (2006) Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J Cell Biol 174:369–377PubMedCrossRefGoogle Scholar
  9. 9.
    Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS (2004) Identification of PSD-95 palmitoylating enzymes. Neuron 44:987–996PubMedCrossRefGoogle Scholar
  10. 10.
    Fukata Y, Iwanaga T, Fukata M (2006) Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods 40:177–182PubMedCrossRefGoogle Scholar
  11. 11.
    Glaser B, Schumacher J, Williams HJ, Jamra RA, Ianakiev N, Milev R, Ohlraun S, Schulze TG, Czerski PM, Hauser J, Jonsson EG, Sedvall GC, Klopp N, Illig T, Becker T, Propping P, Williams NM, Cichon S, Kirov G, Rietschel M, Murphy KC, O’Donovan MC, Nothen MM, Owen MJ (2005) No association between the putative functional ZDHHC8 single nucleotide polymorphism rs175174 and schizophrenia in large European samples. Biol Psychiatry 58:78–80PubMedCrossRefGoogle Scholar
  12. 12.
    Hemsley PA, Kemp AC, Grierson CS (2005) The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell 17:2554–2563PubMedCrossRefGoogle Scholar
  13. 13.
    Hou H, Subramanian K, LaGrassa TJ, Markgraf D, Dietrich LE, Urban J, Decker N, Ungermann C (2005) The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8. Proc Natl Acad Sci U S A 102:17366–17371PubMedCrossRefGoogle Scholar
  14. 14.
    Huang K, Yanai A, Kang R, Arstikaitis P, Singaraja RR, Metzler M, Mullard A, Haigh B, Gauthier-Campbell C, Gutekunst CA, Hayden MR, El-Husseini A (2004) Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 44:977–986PubMedCrossRefGoogle Scholar
  15. 15.
    Kang R, Swayze R, Lise MF, Gerrow K, Mullard A, Honer WG, El-Husseini A (2004) Presynaptic trafficking of synaptotagmin I is regulated by protein palmitoylation. J Biol Chem 279:50524–50536PubMedCrossRefGoogle Scholar
  16. 16.
    Keller CA, Yuan X, Panzanelli P, Martin ML, Alldred M, Sassoe-Pognetto M, Luscher B (2004) The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. J Neurosci 24:5881–5891PubMedCrossRefGoogle Scholar
  17. 17.
    Lam KK, Davey M, Sun B, Roth AF, Davis NG, Conibear E (2006) Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J Cell Biol 174:19–25PubMedCrossRefGoogle Scholar
  18. 18.
    Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84PubMedCrossRefGoogle Scholar
  19. 19.
    Lobo S, Greentree WK, Linder ME, Deschenes RJ (2002) Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 277:41268–41273PubMedCrossRefGoogle Scholar
  20. 20.
    Mansilla F, Birkenkamp-Demtroder K, Kruhoffer M, Sorensen FB, Andersen CL, Laiho P, Aaltonen LA, Verspaget HW, Orntoft TF (2007) Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups. Br J Cancer 96:1896–1903PubMedCrossRefGoogle Scholar
  21. 21.
    Mansouri MR, Marklund L, Gustavsson P, Davey E, Carlsson B, Larsson C, White I, Gustavson KH, Dahl N (2005) Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3;cen) and severe mental retardation. Eur J Hum Genet 13:970–977PubMedCrossRefGoogle Scholar
  22. 22.
    Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M, Gogos JA (2004) Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 36:725–731PubMedCrossRefGoogle Scholar
  23. 23.
    Ohyama T, Verstreken P, Ly CV, Rosenmund T, Rajan A, Tien AC, Haueter C, Schulze KL, Bellen HJ (2007) Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J Cell Biol 179:1481–1496PubMedCrossRefGoogle Scholar
  24. 24.
    Oyama T, Miyoshi Y, Koyama K, Nakagawa H, Yamori T, Ito T, Matsuda H, Arakawa H, Nakamura Y (2000) Isolation of a novel gene on 8p21.3–22 whose expression is reduced significantly in human colorectal cancers with liver metastasis. Genes Chromosomes Cancer 29:9–15PubMedCrossRefGoogle Scholar
  25. 25.
    Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, Taylor FR, Wang EA, Galdes A (1998) Identification of a palmitic acid–modified form of human Sonic hedgehog. J Biol Chem 273:14037–14045PubMedCrossRefGoogle Scholar
  26. 26.
    Rathenberg J, Kittler JT, Moss SJ (2004) Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol Cell Neurosci 26:251–257PubMedCrossRefGoogle Scholar
  27. 27.
    Raymond FL, Tarpey PS, Edkins S, Tofts C, O’Meara S, Teague J, Butler A, Stevens C, Barthorpe S, Buck G, Cole J, Dicks E, Gray K, Halliday K, Hills K, Hinton J, Jones D, Menzies A, Perry J, Raine K, Shepherd R, Small A, Varian J, Widaa S, Mallya U, Moon J, Luo Y, Shaw M, Boyle J, Kerr B, Turner G, Quarrell O, Cole T, Easton DF, Wooster R, Bobrow M, Schwartz CE, Gecz J, Stratton MR, Futreal PA (2007) Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet 80:982–987PubMedCrossRefGoogle Scholar
  28. 28.
    Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752PubMedCrossRefGoogle Scholar
  29. 29.
    Roth AF, Feng Y, Chen L, Davis NG (2002) The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J Cell Biol 159:23–28PubMedCrossRefGoogle Scholar
  30. 30.
    Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR III, Davis NG (2006) Global analysis of protein palmitoylation in yeast. Cell 125:1003–1013PubMedCrossRefGoogle Scholar
  31. 31.
    Saito S, Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y, Takahashi N, Inada T, Ozaki N (2005) No association was found between a functional SNP in ZDHHC8 and schizophrenia in a Japanese case-control population. Neurosci Lett 374:21–24PubMedCrossRefGoogle Scholar
  32. 32.
    Singaraja RR, Hadano S, Metzler M, Givan S, Wellington CL, Warby S, Yanai A, Gutekunst CA, Leavitt BR, Yi H, Fichter K, Gan L, McCutcheon K, Chopra V, Michel J, Hersch SM, Ikeda JE, Hayden MR (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet 11:2815–2828PubMedCrossRefGoogle Scholar
  33. 33.
    Smotrys JE, Schoenfish MJ, Stutz MA, Linder ME (2005) The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p. J Cell Biol 170:1091–1099PubMedCrossRefGoogle Scholar
  34. 34.
    Stowers RS, Isacoff EY (2007) Drosophila huntingtin-interacting protein 14 is a presynaptic protein required for photoreceptor synaptic transmission and expression of the palmitoylated proteins synaptosome-associated protein 25 and cysteine string protein. J Neurosci 27:12874–12883PubMedCrossRefGoogle Scholar
  35. 35.
    Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK, Deschenes RJ, Linder ME (2005) DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem 280:31141–31148PubMedCrossRefGoogle Scholar
  36. 36.
    Topinka JR, Bredt DS (1998) N-Terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron 20:125–134PubMedCrossRefGoogle Scholar
  37. 37.
    Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107PubMedCrossRefGoogle Scholar
  38. 38.
    Uemura T, Mori H, Mishina M (2002) Isolation and characterization of Golgi apparatus-specific GODZ with the DHHC zinc finger domain. Biochem Biophys Res Commun 296:492–496PubMedCrossRefGoogle Scholar
  39. 39.
    Valdez-Taubas J, Pelham H (2005) Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J 24:2524–2532PubMedCrossRefGoogle Scholar
  40. 40.
    Wedegaertner PB, Bourne HR (1994) Activation and depalmitoylation of Gs alpha. Cell 77:1063–1070PubMedCrossRefGoogle Scholar
  41. 41.
    Yamamoto Y, Chochi Y, Matsuyama H, Eguchi S, Kawauchi S, Furuya T, Oga A, Kang JJ, Naito K, Sasaki K (2007) Gain of 5p15.33 is associated with progression of bladder cancer. Oncology 72:132–138PubMedCrossRefGoogle Scholar
  42. 42.
    Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, Gan L, Orban PC, Mullard A, Cowan CM, Raymond LA, Drisdel RC, Green WN, Ravikumar B, Rubinsztein DC, El-Husseini A, Hayden MR (2006) Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 9:824–831PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ryouhei Tsutsumi
    • 1
  • Yuko Fukata
    • 1
    • 2
  • Masaki Fukata
    • 1
    • 2
    Email author
  1. 1.Division of Membrane Physiology, Department of Cell PhysiologyNational Institute for Physiological SciencesOkazakiJapan
  2. 2.PRESTOJapan Science and Technology AgencyTokyoJapan

Personalised recommendations