Pflügers Archiv - European Journal of Physiology

, Volume 457, Issue 3, pp 665–671 | Cite as

Physiological implications of the interaction between the plasma membrane calcium pump and nNOS

  • Elizabeth J. Cartwright
  • Delvac Oceandy
  • Ludwig Neyses
Signal Transduction

Abstract

The tight regulation of intracellular calcium levels is essential for the normal function of a great many cellular processes, and disruption of this regulation, resulting in sustained increases in intracellular-free calcium, has been associated with numerous diseases. One of the several transporters involved in calcium homeostasis is a P-type ATPase known as the plasma membrane calcium/calmodulin-dependent ATPase (PMCA) which is involved in calcium extrusion from the cytosol to the extracellular compartment. It has long been established that in many cell types, in particular non-excitable cells, the primary role of PMCA is in the bulk transport of intracellular calcium; however, its role in excitable cells is less clear. In the heart, for example, calcium is essential for contractile function as well as being a key messenger in signal transduction pathways; however, the mechanisms by which the cardiomyocyte distinguishes between these roles of calcium remain unclear. It is perhaps the transporters not involved in the contractile cycle (such as PMCA) that are able to carry non-contractile signals. This review will highlight the role of PMCA as a modulator of signal transduction pathways and in particular the role of isoform 4 in the regulation of the nitric oxide signalling pathway.

Keywords

Plasma membrane calcium ATPase Neuronal nitric oxide synthase Calcium Signal transduction 

References

  1. 1.
    Carafoli E, Santella L, Branca D, Brini M (2001) Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36:107–260PubMedCrossRefGoogle Scholar
  2. 2.
    Stricker SA (1999) Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 211:157–176PubMedCrossRefGoogle Scholar
  3. 3.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 4:552–565PubMedCrossRefGoogle Scholar
  4. 4.
    Rettig J, Neher E (2002) Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science 298:781–785PubMedCrossRefGoogle Scholar
  5. 5.
    Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305–313PubMedCrossRefGoogle Scholar
  6. 6.
    Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275–281PubMedGoogle Scholar
  7. 7.
    Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109:1580–1589PubMedCrossRefGoogle Scholar
  8. 8.
    Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A 99:1115–1122PubMedCrossRefGoogle Scholar
  9. 9.
    Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205PubMedCrossRefGoogle Scholar
  10. 10.
    Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528PubMedCrossRefGoogle Scholar
  11. 11.
    Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium 34:385–397PubMedCrossRefGoogle Scholar
  12. 12.
    Legrand G, Humez S, Slomianny C, Dewailly E, Vanden Abeele F, Mariot P, Wuytack F, Prevarskaya N (2001) Ca2+ pools and cell growth. Evidence for sarcoendoplasmic Ca2+-ATPases 2B involvement in human prostate cancer cell growth control. J Biol Chem 276:47608–47614PubMedCrossRefGoogle Scholar
  13. 13.
    Halliday NJ (2003) Malignant hyperthermia. J Craniofac Surg 14:800–802PubMedCrossRefGoogle Scholar
  14. 14.
    Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51PubMedGoogle Scholar
  15. 15.
    Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153PubMedGoogle Scholar
  16. 16.
    Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50PubMedGoogle Scholar
  17. 17.
    Falchetto R, Vorherr T, Brunner J, Carafoli E (1991) The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266:2930–2936PubMedGoogle Scholar
  18. 18.
    Falchetto R, Vorherr T, Carafoli E (1992) The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1:1613–1621PubMedCrossRefGoogle Scholar
  19. 19.
    Penniston JT, Enyedi A (1998) Modulation of the plasma membrane Ca2+ pump. J Membr Biol 165:101–109PubMedCrossRefGoogle Scholar
  20. 20.
    Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O'Connor KT, Neumann JC, Andringa A, Miller DA, Prasad V, Doetschman T, Paul RJ, Shull GE (2004) Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750PubMedCrossRefGoogle Scholar
  21. 21.
    Kozel PJ, Friedman RA, Erway LC, Yamoah EN, Liu LH, Riddle T, Duffy JJ, Doetschman T, Miller ML, Cardell EL, Shull GE (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696PubMedCrossRefGoogle Scholar
  22. 22.
    Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi K, Kitamura K (1999) A point mutation in a plasma membrane Ca(2+)-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem Biophys Res Commun 261:773–778PubMedCrossRefGoogle Scholar
  24. 24.
    Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A, Morell RJ, Mohiddin SA, Fananapazir L, Madeo AC, Penniston JT, Griffith AJ (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352:1557–1564PubMedCrossRefGoogle Scholar
  25. 25.
    Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, Armesilla AL, Emerson M, Oceandy D, Knobeloch KP, Neyses L (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226PubMedCrossRefGoogle Scholar
  26. 26.
    Liu L, Ishida Y, Okunade G, Shull GE, Paul RJ (2006) Role of plasma membrane Ca2+-ATPase in contraction–relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol 290:C1239–C1247PubMedCrossRefGoogle Scholar
  27. 27.
    Piuhola J, Hammes A, Schuh K, Neyses L, Vuolteenaho O, Ruskoaho H (2001) Overexpression of sarcolemmal calcium pump attenuates induction of cardiac gene expression in response to ET-1. Am J Physiol Regul Integr Comp Physiol 281:R699–R705PubMedGoogle Scholar
  28. 28.
    Hammes A, Oberdorf-Maass S, Rother T, Nething K, Gollnick F, Linz KW, Meyer R, Hu K, Han H, Gaudron P, Ertl G, Hoffmann S, Ganten U, Vetter R, Schuh K, Benkwitz C, Zimmer HG, Neyses L (1998) Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res 83:877–878PubMedGoogle Scholar
  29. 29.
    Gros R, Afroze T, You X-M, Kabir G, Van Wert R, Kalair W, Hoque AE, Mungrue IN, Husain M (2003) Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res 93:614–621PubMedCrossRefGoogle Scholar
  30. 30.
    Schuh K, Quaschning T, Knauer S, Hu K, Kocak S, Roethlein N, Neyses L (2003) Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J Biol Chem 278:41246–41252PubMedCrossRefGoogle Scholar
  31. 31.
    Oceandy D, Cartwright EJ, Emerson M, Prehar S, Baudoin FM, Zi M, Alatwi N, Schuh K, Williams JC, Armesilla AL, Neyses L (2007) Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation 115:483–492PubMedCrossRefGoogle Scholar
  32. 32.
    Cartwright EJ, Schuh K, Neyses L (2005) Calcium transport in cardiovascular health and disease—the sarcolemmal calcium pump enters the stage. J Mol Cell Cardiol 39:403–406PubMedCrossRefGoogle Scholar
  33. 33.
    Schuh K, Uldrijan S, Telkamp M, Rothlein N, Neyses L (2001) The plasma membrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155:201–205PubMedCrossRefGoogle Scholar
  34. 34.
    Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157PubMedCrossRefGoogle Scholar
  35. 35.
    Shaul PW, Anderson RG (1998) Role of plasma lemmal caveolae in signal transduction. Am J Physiol 275:L843–L851PubMedGoogle Scholar
  36. 36.
    Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467PubMedCrossRefGoogle Scholar
  37. 37.
    Venema VJ, Ju H, Zou R, Venema RC (1997) Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272:28187–28190PubMedCrossRefGoogle Scholar
  38. 38.
    Daniel EE, El-Yazbi A, Cho WJ (2006) Caveolae and calcium handling, a review and a hypothesis. J Cell Mol Med 10:529–544PubMedCrossRefGoogle Scholar
  39. 39.
    Segal SS, Brett SE, Sessa WC (1999) Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am J Physiol 277:H1167–H1177PubMedGoogle Scholar
  40. 40.
    Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH, Schomburg S, Zaki AO, Oceandy D, Cartwright EJ, Buch MH, Emerson M, Neyses L (2006) The sarcolemmal calcium pump, alpha-1 syntrophin and neuronal nitric oxide synthase are part of a macromolecular protein complex. J Biol Chem 281:23341–23348PubMedCrossRefGoogle Scholar
  41. 41.
    Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54:75–159PubMedGoogle Scholar
  42. 42.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376PubMedCrossRefGoogle Scholar
  43. 43.
    Kaley G, Koller A, Rodenburg JM, Messina EJ, Wolin MS (1992) Regulation of arteriolar tone and responses via l-arginine pathway in skeletal muscle. Am J Physiol 262:H987–H992PubMedGoogle Scholar
  44. 44.
    Staunton M, Drexler C, Schmid PG 3rd, Havlik HS, Hudetz AG, Farber NE (2000) Neuronal nitric oxide synthase mediates halothane-induced cerebral microvascular dilation. Anesthesiology 92:125–132PubMedCrossRefGoogle Scholar
  45. 45.
    Xu L, Carter EP, Ohara M, Martin PY, Rogachev B, Morris K, Cadnapaphornchai M, Knotek M, Schrier RW (2000) Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J Physiol Renal Physiol 279:F1110–F1115PubMedGoogle Scholar
  46. 46.
    Ashley EA, Sears CE, Bryant SM, Watkins HC, Casadei B (2002) Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Circulation 105:3011–3016PubMedCrossRefGoogle Scholar
  47. 47.
    Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O'Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339PubMedGoogle Scholar
  48. 48.
    Burkard N, Rokita AG, Kaufmann SG, Hallhuber M, Wu R, Hu K, Hofmann U, Bonz A, Frantz S, Cartwright EJ, Neyses L, Maier LS, Maier SK, Renne T, Schuh K, Ritter O (2007) Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res 100:e32–e44PubMedCrossRefGoogle Scholar
  49. 49.
    Khan SA, Hare JM (2003) The role of nitric oxide in the physiological regulation of Ca2+ cycling. Curr Opin Drug Discov Devel 6:658–666PubMedGoogle Scholar
  50. 50.
    Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, Neubauer S, Terrar DA, Casadei B (2003) Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 92:e52–e59PubMedCrossRefGoogle Scholar
  51. 51.
    Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517PubMedGoogle Scholar
  52. 52.
    Wang Y, Kodani E, Wang J, Zhang SX, Takano H, Tang XL, Bolli R (2004) Cardioprotection during the final stage of the late phase of ischemic preconditioning is mediated by neuronal NO synthase in concert with cyclooxygenase-2. Circ Res 95:84–91PubMedCrossRefGoogle Scholar
  53. 53.
    Damy T, Ratajczak P, Shah AM, Camors E, Marty I, Hasenfuss G, Marotte F, Samuel JL, Heymes C (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363:1365–1367PubMedCrossRefGoogle Scholar
  54. 54.
    Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel JL, Heymes C (2004) Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110:2368–2375PubMedCrossRefGoogle Scholar
  55. 55.
    Dawson D, Lygate CA, Zhang MH, Hulbert K, Neubauer S, Casadei B (2005) nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation 112:3729–3737PubMedCrossRefGoogle Scholar
  56. 56.
    Hare JM (2003) Nitric oxide and excitation–contraction coupling. J Mol Cell Cardiol 35:719–729PubMedCrossRefGoogle Scholar
  57. 57.
    Danson EJ, Choate JK, Paterson DJ (2005) Cardiac nitric oxide: emerging role for nNOS in regulating physiological function. Pharmacol Ther 106:57–74PubMedCrossRefGoogle Scholar
  58. 58.
    Sears CE, Ashley EA, Casadei B (2004) Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol Sci 359:1021–1044PubMedCrossRefGoogle Scholar
  59. 59.
    Cartwright EJ, Oceandy D, Neyses L (2007) Plasma membrane calcium ATPase and its relationship to nitric oxide signaling in the heart. Ann NY Acad Sci 1099:247–253PubMedCrossRefGoogle Scholar
  60. 60.
    Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702PubMedCrossRefGoogle Scholar
  61. 61.
    DeMarco SJ, Strehler EE (2001) Plasma membrane Ca2+-ATPase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem 276:21594–21600PubMedCrossRefGoogle Scholar
  62. 62.
    Kim E, DeMarco SJ, Marfatia SM, Chishti AH, Sheng M, Strehler EE (1998) Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains. J Biol Chem 273:1591–1595PubMedCrossRefGoogle Scholar
  63. 63.
    Zabe M, Dean WL (2001) Plasma membrane Ca(2+)-ATPase associates with the cytoskeleton in activated platelets through a PDZ-binding domain. J Biol Chem 276:14704–14709PubMedCrossRefGoogle Scholar
  64. 64.
    Schuh K, Uldrijan S, Gambaryan S, Roethlein N, Neyses L (2003) Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem 278:9778–9783PubMedCrossRefGoogle Scholar
  65. 65.
    Goellner GM, DeMarco SJ, Strehler EE (2003) Characterization of PISP, a novel single-PDZ protein that binds to all plasma membrane Ca2+-ATPase b-splice variants. Ann N Y Acad Sci 986:461–471PubMedGoogle Scholar
  66. 66.
    DeMarco SJ, Chicka MC, Strehler EE (2002) Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes. J Biol Chem 277:10506–10511PubMedCrossRefGoogle Scholar
  67. 67.
    Buch MH, Pickard A, Rodriguez A, Gillies S, Maass AH, Emerson M, Cartwright EJ, Williams JC, Oceandy D, Redondo JM, Neyses L, Armesilla AL (2005) The sarcolemmal calcium pump inhibits the calcineurin/nuclear factor of activated T-cell pathway via interaction with the calcineurin A catalytic subunit. J Biol Chem 280:29479–29487PubMedCrossRefGoogle Scholar
  68. 68.
    Armesilla AL, Williams JC, Buch MH, Pickard A, Emerson M, Cartwright EJ, Oceandy D, Vos MD, Gillies S, Clark GJ, Neyses L (2004) Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1). J Biol Chem 279:31318–31328PubMedCrossRefGoogle Scholar
  69. 69.
    Rimessi A, Coletto L, Pinton P, Rizzuto R, Brini M, Carafoli E (2005) Inhibitory interaction of the 14-3-3{epsilon} protein with isoform 4 of the plasma membrane Ca(2+)-ATPase pump. J Biol Chem 280:37195–37203PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Elizabeth J. Cartwright
    • 1
  • Delvac Oceandy
    • 1
  • Ludwig Neyses
    • 1
  1. 1.Cardiovascular Medicine Research GroupUniversity of ManchesterManchesterUK

Personalised recommendations