Pflügers Archiv - European Journal of Physiology

, Volume 456, Issue 5, pp 897–915

Dual regulation of the ATP-sensitive potassium channel by activation of cGMP-dependent protein kinase

Ion Channels


Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels couple cellular metabolic status to membrane electrical activity. In this study, we performed patch-clamp recordings to investigate how cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) regulates the function of KATP channels, using both transfected human SH-SY5Y neuroblastoma cells and embryonic kidney (HEK) 293 cells. In intact SH-SY5Y cells, the single-channel currents of Kir6.2/sulfonylurea receptor (SUR) 1 channels, a neuronal-type KATP isoform, were enhanced by zaprinast, a cGMP-specific phosphodiesterase inhibitor; this enhancement was abolished by inhibition of PKG, suggesting a stimulatory role of cGMP/PKG signaling in regulating the function of neuronal KATP channels. Similar effects of cGMP accumulation were confirmed in intact HEK293 cells expressing Kir6.2/SUR1 channels. In contrast, direct application of purified PKG suppressed rather than activated Kir6.2/SUR1 channels in excised, inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels expressed without the SUR subunit were not modulated by zaprinast or purified PKG. Lastly, reconstitution of the soluble guanylyl cyclase/cGMP/PKG signaling pathway by generation of nitric oxide led to Kir6.2/SUR1 channel activation in both cell types. Taken together, here, we report novel findings that PKG exerts dual functional regulation of neuronal KATP channels in a SUR subunit-dependent manner, which may provide new means of therapeutic intervention for manipulating neuronal excitability and/or survival.


KATP channel Nitric oxide Patch clamp Phosphorylation Protein kinase G Signal transduction Single channel 

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Physiology and Membrane BiologyUniversity of CaliforniaDavisUSA
  2. 2.Department of AnesthesiologyUniversity of CaliforniaDavisUSA

Personalised recommendations