Advertisement

Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing

  • Leigh Anne Swayne
  • Emmanuel BourinetEmail author
Invited Review

Abstract

N- and T-type voltage-gated calcium channels are key established players in chronic pain. Current work suggests that alternative splicing of these channels constitutes an important aspect in the investigation of their roles in the pathogenesis of chronic pain. Recent N-type channel studies describe a nociceptor-enriched alternatively spliced module responsible for voltage-independent G protein modulation and internalization, which is implicated in the control of distinct nociceptive pathways. On the contrary, although a large body of work has demonstrated that peripheral Cav3.2-encoded T-type currents are involved in several types of chronic pain, little is known with respect to the expression of numerous newly discovered splice variants in specific pain pathways. The elucidation of the new layers of molecular complexity uncovered in N- and T-type channel splice variants and their respective locations and roles in different pain pathways will allow for the development of better therapeutic strategies for the treatment of chronic pain.

Keywords

Pain Calcium channel Dorsal root ganglion Dorsal horn Neurotransmission 

Notes

Acknowledgements

LAS is supported by a Marie Curie International Incoming Postdoctoral Fellowship. EB is supported by research grants from the Agence Nationale de la Recherche (ANR-05-NEUR-031-01), the ARC-INCa-2006, the Institut UPSA de la Douleur, the Association Française contre les Myopathies (AFM), and the Fédération pour la Recherche sur le Cerveau (FRC, équipement 2006).

References

  1. 1.
    Altier C, Zamponi GW (2004) Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci 25:465–470PubMedCrossRefGoogle Scholar
  2. 2.
    Westenbroek RE, Hell JW, Warberm C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1A subunit. Neuron 9:1099–1115PubMedCrossRefGoogle Scholar
  3. 3.
    Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418PubMedGoogle Scholar
  4. 4.
    Bao J, Li JJ, Perl ER (1998) Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci 18:8740–8750PubMedGoogle Scholar
  5. 5.
    Heinke B, Balzer E, Sandkuhler J (2004) Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci 19:103–111PubMedCrossRefGoogle Scholar
  6. 6.
    Rycroft BK, Vikman KS, Christie MJ (2007) Inflammation reduces the contribution of N-type calcium channels to primary afferent synaptic transmission onto NK1 receptor-positive lamina I neurons in the rat dorsal horn. J Physiol 580:883–894PubMedCrossRefGoogle Scholar
  7. 7.
    Chaplan SR, Pogrel JW, Yaksh TL (1994) Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J Pharmacol Exp Ther 269:1117–1123PubMedGoogle Scholar
  8. 8.
    Matthews EA, Dickenson AH (2001) Effects of spinally delivered N- and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy. Pain 92:235–246PubMedCrossRefGoogle Scholar
  9. 9.
    Hatakeyama S, Wakamori M, Ino M, Miyamoto N, Takahashi E, Yoshinaga T, Sawada K, Imoto K, Tanaka I, Yoshizawa T, Nishizawa Y, Mori Y, Niidome T, Shoji S (2001) Differential nociceptive responses in mice lacking the alpha(1B) subunit of N-type Ca(2+) channels. Neuroreport 12:2423–2427PubMedCrossRefGoogle Scholar
  10. 10.
    Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, Kim HL, Park JM, Kim DK, Jung SJ, Kim J, Shin HS (2001) Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 18:235–245PubMedCrossRefGoogle Scholar
  11. 11.
    Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T (2001) Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 20:2349–2356PubMedCrossRefGoogle Scholar
  12. 12.
    Bell TJ, Thaler C, Castiglioni AJ, Helton TD, Lipscombe D (2004) Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 41:127–138PubMedCrossRefGoogle Scholar
  13. 13.
    Castiglioni AJ, Raingo J, Lipscombe D (2006) Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J Physiol 576:119–134PubMedCrossRefGoogle Scholar
  14. 14.
    Altier C, Dale CS, Kisilevsky AE, Chapman K, Castiglioni AJ, Matthews EA, Evans RM, Dickenson AH, Lipscombe D, Vergnolle N, Zamponi GW (2007) Differential role of N-type calcium channel splice isoforms in pain. J Neurosci 27:6363–6373PubMedCrossRefGoogle Scholar
  15. 15.
    Diverse-Pierluissi M, Dunlap K (1995) Interaction of convergent pathways that inhibit N-type calcium currents in sensory neurons. Neuroscience 65:477–483PubMedCrossRefGoogle Scholar
  16. 16.
    Luebke JI, Dunlap K (1994) Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflugers Arch 428:499–507PubMedCrossRefGoogle Scholar
  17. 17.
    Shapiro MS, Hille B (1993) Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways. Neuron 10:11–20PubMedCrossRefGoogle Scholar
  18. 18.
    Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT (2005) G Protein-gated inhibitory module of N-type (CaV2.2) Ca2+ channels. Neuron 46:891–904PubMedCrossRefGoogle Scholar
  19. 19.
    De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP (1997) Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385:446–450 (see comments)PubMedCrossRefGoogle Scholar
  20. 20.
    Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 385:442–446 (see comments)PubMedCrossRefGoogle Scholar
  21. 21.
    Delmas P, Abogadie FC, Dayrell M, Haley JE, Milligan G, Caulfield MP, Brown DA, Buckley NJ (1998) G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents in sympathetic neurons. Eur J Neurosci. 10:1654–1666PubMedCrossRefGoogle Scholar
  22. 22.
    Kammermeier PJ, Ruiz-Velasco V, Ikeda SR (2000) A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both Galpha q/11 and Gbeta gamma. J Neurosci 20:5623–5629PubMedGoogle Scholar
  23. 23.
    Diverse-Pierluissi M, Remmers AE, Neubig RR, Dunlap K (1997) Novel form of crosstalk between G protein and tyrosine kinase pathways. Proc Natl Acad Sci USA 94:5417–5421PubMedCrossRefGoogle Scholar
  24. 24.
    Schiff ML, Siderovski DP, Jordan JD, Brothers G, Snow B, De Vries L, Ortiz DF, Diverse-Pierluissi M (2000) Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature. 408:723–727PubMedCrossRefGoogle Scholar
  25. 25.
    Raingo J, Castiglioni AJ, Lipscombe D (2007) Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci 10:285–292PubMedCrossRefGoogle Scholar
  26. 26.
    Luebke JI, Dunlap K (1994) Sensory neuron N-type calcium currents are inhibited by both voltage-dependent and -independent mechanisms. Pflugers Arch 428:499–507PubMedCrossRefGoogle Scholar
  27. 27.
    Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447PubMedCrossRefGoogle Scholar
  28. 28.
    Roche KW, Standley S, McCallum J, Dune LC, Ehlers MD, Wenthold RJ (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802PubMedCrossRefGoogle Scholar
  29. 29.
    Scott DB, Michailidis I, Mu Y, Logothetis D, Ehlers MD (2004) Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J Neurosci 24:7096–7109PubMedCrossRefGoogle Scholar
  30. 30.
    Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, Chen L, Beedle AM, Ferguson SS, Mezghrani A, Dubel SJ, Bourinet E, McRory JE, Zamponi GW (2006) ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci 9:31–40PubMedCrossRefGoogle Scholar
  31. 31.
    Beedle AM, McRory JE, Poirot O, Doering CJ, Altier C, Barrere C, Hamid J, Nargeot J, Bourinet E, Zamponi GW (2004) Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 7:118–125PubMedCrossRefGoogle Scholar
  32. 32.
    Briscini L, Corradini L, Ongini E, Bertorelli R (2002) Up-regulation of ORL-1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. Eur J Pharmacol. 447:59–65PubMedCrossRefGoogle Scholar
  33. 33.
    Chen Y, Sommer C (2006) Nociceptin and its receptor in rat dorsal root ganglion neurons in neuropathic and inflammatory pain models: implications on pain processing. J Peripher Nerv Syst 11:232–240PubMedCrossRefGoogle Scholar
  34. 34.
    Ma F, Xie H, Dong ZQ, Wang YQ, Wu GC (2005) Expression of ORL1 mRNA in some brain nuclei in neuropathic pain rats. Brain Res 1043:214–217PubMedCrossRefGoogle Scholar
  35. 35.
    Ueda H, Inoue M, Takeshima H, Iwasawa Y (2000) Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J Neurosci 20:7640–7647PubMedGoogle Scholar
  36. 36.
    Andoh T, Itoh M, Kuraishi Y (1997) Nociceptin gene expression in rat dorsal root ganglia induced by peripheral inflammation. Neuroreport 8:2793–2796PubMedCrossRefGoogle Scholar
  37. 37.
    Tombler E, Cabanilla NJ, Carman P, Permaul N, Hall JJ, Richman RW, Lee J, Rodriguez J, Felsenfeld DP, Hennigan RF, Diverse-Pierluissi MA (2006) G protein-induced trafficking of voltage-dependent calcium channels. J Biol Chem 281:1827–1839PubMedCrossRefGoogle Scholar
  38. 38.
    Wu ZZ, Chen SR, Pan HL (2006) Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons. Neuroscience 141:407–419PubMedCrossRefGoogle Scholar
  39. 39.
    Nilius B, Talavera K, Verkhratsky A (2006) T-type calcium channels: the never ending story. Cell Calcium. 40:81–88PubMedCrossRefGoogle Scholar
  40. 40.
    Perez-Reyes E (2006) Molecular characterization of T-type calcium channels. Cell Calcium 40:89–96PubMedCrossRefGoogle Scholar
  41. 41.
    Perez-Reyes E, Lory P (2006) Molecular biology of T-type calcium channels. CNS Neurol Disord Drug Targets 5:605–609PubMedCrossRefGoogle Scholar
  42. 42.
    Pape HC, Munsch T, Budde T (2004) Novel vistas of calcium-mediated signalling in the thalamus. Pflugers Arch 448:131–138PubMedCrossRefGoogle Scholar
  43. 43.
    Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58:329–348PubMedCrossRefGoogle Scholar
  44. 44.
    Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664PubMedCrossRefGoogle Scholar
  45. 45.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161PubMedGoogle Scholar
  46. 46.
    Coste B, Crest M, Delmas P (2007) Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J Gen Physiol 129:57–77PubMedCrossRefGoogle Scholar
  47. 47.
    Scroggs RS, Fox AP (1992) Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol 445:639–658PubMedGoogle Scholar
  48. 48.
    Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237–1240PubMedCrossRefGoogle Scholar
  49. 49.
    Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS (2003) Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 302:117–119PubMedCrossRefGoogle Scholar
  50. 50.
    Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324PubMedCrossRefGoogle Scholar
  51. 51.
    Lambert RC, McKenna F, Maulet Y, Talley EM, Bayliss DA, Cribbs LL, Lee JH, Perez-Reyes E, Feltz A (1998) Low-voltage-activated Ca2+ currents are generated by members of the CavT subunit family (alpha1G/H) in rat primary sensory neurons. J Neurosci 18:8605–8613PubMedGoogle Scholar
  52. 52.
    Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR (2003) A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci 6:724–730PubMedCrossRefGoogle Scholar
  53. 53.
    Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911PubMedGoogle Scholar
  54. 54.
    Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porreca F (2003) Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 105:159–168PubMedCrossRefGoogle Scholar
  55. 55.
    Todorovic SM, Meyenburg A, Jevtovic-Todorovic V (2002) Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res. 951:336–340PubMedCrossRefGoogle Scholar
  56. 56.
    Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS (2007) Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 6:425–431PubMedCrossRefGoogle Scholar
  57. 57.
    Zhong X, Liu JR, Kyle JW, Hanck DA, Agnew WS (2006) A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet 15:1497–1512PubMedCrossRefGoogle Scholar
  58. 58.
    Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of t-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27:3305–3316PubMedCrossRefGoogle Scholar
  59. 59.
    Joksovic PM, Nelson MT, Jevtovic-Todorovic V, Patel MK, Perez-Reyes E, Campbell KP, Chen CC, Todorovic SM (2006) CaV3.2 is the major molecular substrate for redox regulation of T-type Ca2+ channels in the rat and mouse thalamus. J Physiol 574:415–430PubMedCrossRefGoogle Scholar
  60. 60.
    Baccei ML, Kocsis JD (2000) Voltage-gated calcium currents in axotomized adult rat cutaneous afferent neurons. J Neurophysiol 83:2227–2238PubMedGoogle Scholar
  61. 61.
    Fuchs A, Rigaud M, Sarantopoulos CD, Filip P, Hogan QH (2007) Contribution of calcium channel subtypes to the intracellular calcium signal in sensory neurons: the effect of injury. Anesthesiology 107:117–127PubMedCrossRefGoogle Scholar
  62. 62.
    Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P (2001) Alternatively spliced alpha(1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 80:1238–1250PubMedCrossRefGoogle Scholar
  63. 63.
    Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW (2004) Expression of T-type calcium channel splice variants in human glioma. Glia 48:112–119PubMedCrossRefGoogle Scholar
  64. 64.
    Mittman S, Guo J, Agnew WS (1999) Structure and alternative splicing of the gene encoding [alpha]1G, a human brain T calcium channel [alpha]1 subunit. Neurosci Lett 274:143–146PubMedCrossRefGoogle Scholar
  65. 65.
    Murbartian J, Arias JM, Perez-Reyes E (2004) Functional impact of alternative splicing of human T-type Cav3.3 calcium channels. J Neurophysiol 92:3399–3407PubMedCrossRefGoogle Scholar
  66. 66.
    Talavera K, Nilius B (2006) Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40:97–114PubMedCrossRefGoogle Scholar
  67. 67.
    Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ (2003) T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 424:209–213PubMedCrossRefGoogle Scholar
  68. 68.
    Wolfe JT, Wang H, Perez-Reyes E, Barrett PQ (2002) Stimulation of recombinant Ca(v)3.2, T-type, Ca(2+) channel currents by CaMKIIgamma(C). J Physiol 538:343–355PubMedCrossRefGoogle Scholar
  69. 69.
    Bian F, Li Z, Offord J, Davis MD, McCormick J, Taylor CP, Walker LC (2006) Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdala, and spinal cord: An ex vivo autoradiographic study in alpha2-delta type 1 genetically modified mice. Brain Res 1075:68–80PubMedCrossRefGoogle Scholar
  70. 70.
    Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su T-Z, Bramwell S, Corradini L, England S, Winks J, Kinloch RA, Hendrich J, Dolphin AC, Webb T, Williams D (2006) Identification of the {alpha}2-{delta}-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci USA 103:17537–17542PubMedCrossRefGoogle Scholar
  71. 71.
    Gee NS, Brown JP, Dissanayake VUK, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha(2)[IMAGE] subunit of a calcium channel. J Biol Chem 271:5768–5776PubMedCrossRefGoogle Scholar
  72. 72.
    Dubel SJ, Altier C, Chaumont S, Lory P, Bourinet E, Nargeot J (2004) Plasma membrane expression of T-type calcium channel {alpha}1 subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem 279:29263–29269PubMedCrossRefGoogle Scholar
  73. 73.
    Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D (2006) Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 10:287–333PubMedCrossRefGoogle Scholar
  74. 74.
    McGivern JG (2006) Targeting N-type and T-type calcium channels for the treatment of pain. Drug Discov Today 11:245–253PubMedCrossRefGoogle Scholar
  75. 75.
    Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Département de PhysiologieInstitut de Génomique FonctionnelleMontpellierFrance
  2. 2.CNRS UMR5203, INSERM U661, IFR3Universités Montpellier I and IIMontpellierFrance

Personalised recommendations