Pflügers Archiv - European Journal of Physiology

, Volume 455, Issue 6, pp 987–994

Parameters of ventricular contractility in mice: influence of load and sensitivity to changes in inotropic state

  • An Van den Bergh
  • Willem Flameng
  • Paul Herijgers
Cardiovascular System


We examined the relative usefulness of parameters to determine left ventricular contractility in mice invasively. The optimal parameter must be sensitive to changes in inotropy and insensitive to changes in loading. Furthermore, it should be able to confirm or reject the hypothesis of altered myocardial contractility after a limited number of experiments. Left ventricular function was assessed in closed-chest mice using a microtip pressure-conductance catheter at baseline and after increases in preload, afterload, or contractility. The parameters are differentially influenced by loading conditions and inotropic state. Only those parameters that could differentiate between basal and increased contractility with a power of 0.85 in ten or less experiments were considered useful. Ejection fraction, preload-recruitable stroke work (PRSW), and dP/dtmax/Ved could demonstrate the smallest changes in contractility. Stroke work, maximal power and dP/dtmax were most influenced by preload. End-systolic elastance, ejection fraction, and stroke work were afterload-dependent. Dividing the magnitude of the effect of inotropic stimulation to that of load changes gives an index for the usefulness for each parameter. A high ratio indicates that the change in parameter reflects inotropic rather than load change. This ratio was highest for PRSW, which seems to be the best parameter for judging contractility differences in mice.


Myocardial contraction Mice Ventricular function Heart function tests 


  1. 1.
    Aghajani E, Muller S, Kjorstad KE, Korvald C, Nordhaug D, Revhaugand A, Myrmel T (2006) The pressure–volume loop revisited: is the search for a cardiac contractility index a futile cycle? Shock 25:370–376PubMedCrossRefGoogle Scholar
  2. 2.
    Baan J, van der Velde ET (1988) Sensitivity of left ventricular end-systolic pressure–volume relation to type of loading intervention in dogs. Circ Res 62:1247–1258PubMedGoogle Scholar
  3. 3.
    Bergman MR, Teerlink JR, Mahimkar R, Li L, Zhu BQ, Nguyen A, Dahi S, Karliner JS, Lovett DH (2007) Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol Heart Circ Physiol 292:H1847–H1860PubMedCrossRefGoogle Scholar
  4. 4.
    Borow KM, Neumann A, Marcus RH, Sareli P, Lang RM (1992) Effects of simultaneous alterations in preload and afterload on measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force–velocity indexes. J Am Coll Cardiol 20:787–795PubMedGoogle Scholar
  5. 5.
    Burkhoff D, Sugiura S, Yue DT, Sagawa K (1987) Contractility-dependent curvilinearity of end-systolic pressure–volume relations. Am J Physiol 252:H1218–H1227PubMedGoogle Scholar
  6. 6.
    Carabello BA (2002) Evolution of the study of left ventricular function: everything old is new again. Circulation 105:2701–2703PubMedCrossRefGoogle Scholar
  7. 7.
    Feneley MP, Skelton TN, Kisslo KB, Davis JW, Bashore TM, Rankin JS (1992) Comparison of preload recruitable stroke work, end-systolic pressure–volume and dP/dtmax-end-diastolic volume relations as indexes of left ventricular contractile performance in patients undergoing routine cardiac catheterization. J Am Coll Cardiol 19:1522–1530PubMedGoogle Scholar
  8. 8.
    Georgakopoulos D, Kass D (2001) Minimal force-frequency modulation of inotropy and relaxation of in situ murine heart. J Physiol 534:535–545PubMedCrossRefGoogle Scholar
  9. 9.
    Georgakopoulos D, Kass DA (2002) Assessment of Cardiovascular function in the mouse using pressure–volume relationships. Acta Cardiol Sin 18:101–112Google Scholar
  10. 10.
    Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston DC Jr, Rankin JS (1985) Linearity of the Frank–Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71:994–1009PubMedGoogle Scholar
  11. 11.
    Gunther S, Grossman W (1979) Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation 59:679–688PubMedGoogle Scholar
  12. 12.
    Joho S, Ishizaka S, Sievers R, Foster E, Simpson PC, Grossman W (2007) Left ventricular pressure–volume relationship in conscious mice. Am J Physiol Heart Circ Physiol 292:H369–H377PubMedCrossRefGoogle Scholar
  13. 13.
    Kass DA, Beyar R (1991) Evaluation of contractile state by maximal ventricular power divided by the square of end-diastolic volume. Circulation 84:1698–1708PubMedGoogle Scholar
  14. 14.
    Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K (1987) Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure–volume relationships. Circulation 76:1422–1436PubMedGoogle Scholar
  15. 15.
    Little WC (1985) The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res 56:808–815PubMedGoogle Scholar
  16. 16.
    Little WC, Cheng CP, Mumma M, Igarashi Y, Vinten-Johansen J, Johnston WE (1989) Comparison of measures of left ventricular contractile performance derived from pressure–volume loops in conscious dogs. Circulation 80:1378–1387PubMedGoogle Scholar
  17. 17.
    Mahler F, Ross J Jr, O’Rourke RA, Covell JW (1975) Effects of changes in preload, afterload and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol 35:626–634PubMedCrossRefGoogle Scholar
  18. 18.
    Nakayama M, Chen CH, Nevo E, Fetics B, Wong E, Kass DA (1998) Optimal preload adjustment of maximal ventricular power index varies with cardiac chamber size. Am Heart J 136:281–288PubMedCrossRefGoogle Scholar
  19. 19.
    Nemoto S, DeFreitas G, Mann DL, Carabello BA (2002) Effects of changes in left ventricular contractility on indexes of contractility in mice. Am J Physiol Heart Circ Physiol 283:H2504–H2510PubMedGoogle Scholar
  20. 20.
    Opie L (2004) Heart physiology. From cell to circulation. 4th edn. Lippincott Williams & WIlkins, PhiladelphiaGoogle Scholar
  21. 21.
    Pak PH, Kass DA (1995) Assessment of ventricular function in dilated cardiomyopathies. Curr Opin Cardiol 10:339–344PubMedCrossRefGoogle Scholar
  22. 22.
    Rahko PS (1994) Comparative efficacy of three indexes of left ventricular performance derived from pressure-volume loops in heart failure induced by tachypacing. J Am Coll Cardiol 23:209–218PubMedCrossRefGoogle Scholar
  23. 23.
    Sato T, Shishido T, Kawada T, Miyano H, Miyashita H, Inagaki M, Sugimachi M, Sunagawa K (1998) ESPVR of in situ rat left ventricle shows contractility-dependent curvilinearity. Am J Physiol 274:H1429–H1434PubMedGoogle Scholar
  24. 24.
    Segers P, Tchana-Sato V, Leather HA, Lambermont B, Ghuysen A, Dogne JM, Benoit P, Morimont P, Wouters PF, Verdonck P, Kohl P (2003) Determinants of left ventricular preload-adjusted maximal power. Am J Physiol Heart Circ Physiol 284:H2295–H2301PubMedGoogle Scholar
  25. 25.
    Sharir T, Feldman MD, Haber H, Feldman AM, Marmor A, Becker LC, Kass DA (1994) Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninvasive application. Circulation 89:2045–2053PubMedGoogle Scholar
  26. 26.
    Sodums MT, Badke FR, Starling MR, Little WC, O’Rourke RA (1984) Evaluation of left ventricular contractile performance utilizing end-systolic pressure–volume relationships in conscious dogs. Circ Res 54:731–739PubMedGoogle Scholar
  27. 27.
    Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322PubMedGoogle Scholar
  28. 28.
    Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245:H773–H780PubMedGoogle Scholar
  29. 29.
    Takeuchi M, Odake M, Takaoka H, Hayashi Y, Yokoyama M (1992) Comparison between preload recruitable stroke work and the end-systolic pressure–volume relationship in man. Eur Heart J 13(Suppl E):80–84PubMedGoogle Scholar
  30. 30.
    Tao W, Deyo DJ, Traber DL, Johnston WE, Sherwood ER (2004) Hemodynamic and cardiac contractile function during sepsis caused by cecal ligation and puncture in mice. Shock 21:31–37PubMedCrossRefGoogle Scholar
  31. 31.
    Van Den Bergh A, Flameng W, Herijgers P (2006) Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favourable loading conditions. Eur J Heart Fail 8:777–783PubMedCrossRefGoogle Scholar
  32. 32.
    van der Velde ET, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J (1991) Nonlinearity and load sensitivity of end-systolic pressure–volume relation of canine left ventricle in vivo. Circulation 83:315–327PubMedGoogle Scholar
  33. 33.
    Wallace A, Lam HW, Mangano DT (1995) Linearity, load dependence, hysteresis, and clinical associations of systolic and diastolic indices of left ventricular function in man. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. J Card Surg 10:460–467PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • An Van den Bergh
    • 1
  • Willem Flameng
    • 1
  • Paul Herijgers
    • 1
  1. 1.Department of Cardiovascular Diseases, Division of Experimental Cardiac SurgeryKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations