Pflügers Archiv - European Journal of Physiology

, Volume 455, Issue 6, pp 1007–1016

Bradykinin does not induce gap formation between human endothelial cells

  • Pia Jungmann
  • Marianne Wilhelmi
  • Hans Oberleithner
  • Christoph Riethmüller
Cell and Molecular Physiology


Generally, a formation of paracellular gaps is considered to be the main pathway for fluid passage across endothelia. A model substance for studies in vitro is the vasodilatory peptide bradykinin, which has important functions in inflammation and vascular fluid balance. The mechanisms by which it increases endothelial permeability are not as yet clearly defined. Paracellular gap formation was approached using atomic force microscopy (AFM) on human umbilical vein endothelial cells grown on permeable filter supports. To further distinguish between para- vs transcellular fluid passage, a standard permeability assay was modified by a rapid cooling protocol to specifically inhibit vesicular transport pathways. Cell layers stimulated with bradykinin (1 μM) did not show significant alterations at the cellular junctions. However, gap formation was easily detectable by AFM after addition of the Ca2+-ionophore ionomycin (1 μM), which was taken as a positive control for cellular contraction. At 37°C, bradykinin enhanced fluorescein isothiocyanate-dextran permeability by 48 ± 11%. This was blocked by rapid cooling of the sample, indicating a vesicular mechanism of fluid transport. Contrastingly, ionomycin-induced permeability (259 ± 43%) persisted after cooling (230 ± 44%), thereby confirming paracellular gap formation. Accordingly, endocytotic vesicle formation, as detected by fluorescence microscopy, was upregulated by 68 ± 15% through bradykinin action, while ionomycin did not show a significant effect (7 ± 26%). The combined results of both permeability and morphometric studies lead to the conclusion that bradykinin promotes transcellular fluid passage rather than increasing paracellular diffusion.


Bradykinin Endothelium Permeability Vascular permeability Vascular function 


  1. 1.
    Adamson RH, Zeng M, Adamson GN, Lenz JF, Curry FE (2003) PAF-and bradykinin-induced hyperpermeability of rat venules is independent of actin-myosin contraction. Am J Physiol Heart Circ Physiol 285:H406–H417PubMedGoogle Scholar
  2. 2.
    Barbee KA (1995) Changes in surface topography in endothelial monolayers with time at confluence: influence on subcellular shear stress distribution due to flow. Biochem Cell Biol 73:501–505PubMedCrossRefGoogle Scholar
  3. 3.
    Borlongan CV, Emerich DF, Hoffer BJ, Bartus RT (2002) Bradykinin receptor agonist facilitates low-dose cyclosporine-A protection against 6-hydroxydopamine neurotoxicity. Brain Res 956:211–220PubMedCrossRefGoogle Scholar
  4. 4.
    Braet F, de Zanger R, Kalle W, Raap A, Tanke H, Wisse E (1996) Comparative scanning, transmission and atomic force microscopy of the microtubular cytoskeleton in fenestrated liver endothelial cells. Scanning Microsc Suppl 10:225–235PubMedGoogle Scholar
  5. 5.
    Casnocha SA, Eskin SG, Hall ER, McIntire LV (1989) Permeability of human endothelial monolayers: effect of vasoactive agonists and cAMP. J Appl Physiol 67:1997–2005PubMedGoogle Scholar
  6. 6.
    Catizone A, Chiantore MV, Andreola F, Coletti D, Medolago AL, Alescio T (1996) Non-specific pinocytosis by human endothelial cells cultured as multicellular aggregates: uptake of lucifer yellow and horse radish peroxidase. Cell Mol Biol (Noisy-le-grand) 42:1229–1242Google Scholar
  7. 7.
    Cipolla MJ, Crete R, Vitullo L, Rix RD (2004) Transcellular transport as a mechanism of blood–brain barrier disruption during stroke. Front Biosci 9:777–785PubMedCrossRefGoogle Scholar
  8. 8.
    Ehringer WD, Edwards MJ, Miller FN (1996) Mechanisms of alpha-thrombin, histamine, and bradykinin induced endothelial permeability. J Cell Physiol 167:562–569PubMedCrossRefGoogle Scholar
  9. 9.
    Goeckeler ZM, Wysolmerski RB (1995) Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol 130:613–627PubMedCrossRefGoogle Scholar
  10. 10.
    Hashizume K, Black KL (2002) Increased endothelial vesicular transport correlates with increased blood-tumor barrier permeability induced by bradykinin and leukotriene C4. J Neuropathol Exp Neurol 61:725–735PubMedGoogle Scholar
  11. 11.
    Heitsch H (2000) Bradykinin B2 receptor as a potential therapeutic target. Drug News Perspect 13:213–225PubMedGoogle Scholar
  12. 12.
    Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krull M, Seybold J, Seeger W, Rascher W, Schutte H, Suttorp N (2002) Adrenomedullin reduces endothelial hyperpermeability. Circ Res 91:618–625PubMedCrossRefGoogle Scholar
  13. 13.
    Houle S, Marceau F (2003) Wortmannin alters the intracellular trafficking of the bradykinin B2 receptor: role of phosphoinositide 3-kinase and Rab5. Biochem J 375:151–158PubMedCrossRefGoogle Scholar
  14. 14.
    Ikeda K, Utoguchi N, Makimoto H, Mizuguchi H, Nakagawa S, Mayumi T (1999) Different reactions of aortic and venular endothelial cell monolayers to histamine on macromolecular permeability: role of cAMP, cytosolic Ca2+ and F-actin. Inflammation 23:87–97PubMedCrossRefGoogle Scholar
  15. 15.
    Iwasa Y, Hirono C, Sugita M, Takemoto K, Shiba Y (2001) External Cl(−)-dependent formation of watery vacuoles by long-term hypotonic shock in 3T3-L1 cells. Cell Physiol Biochem 11:311–320PubMedCrossRefGoogle Scholar
  16. 16.
    Johren O, Dendorfer A, Dominiak P (2004) Cardiovascular and renal function of angiotensin II type-2 receptors. Cardiovasc Res 62:460–467PubMedCrossRefGoogle Scholar
  17. 17.
    Langer F, Morys-Wortmann C, Kusters B, Storck J (1999) Endothelial protease-activated receptor-2 induces tissue factor expression and von Willebrand factor release. Br J Haematol 105:542–550PubMedCrossRefGoogle Scholar
  18. 18.
    Liebmann C, Graness A, Ludwig B, Adomeit A, Boehmer A, Boehmer FD, Nurnberg B, Wetzker R (1996) Dual bradykinin B2 receptor signalling in A431 human epidermoid carcinoma cells: activation of protein kinase C is counteracted by a GS-mediated stimulation of the cyclic AMP pathway. Biochem J 313(Pt 1):109–118PubMedGoogle Scholar
  19. 19.
    Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol 267:L223–L241PubMedGoogle Scholar
  20. 20.
    Marceau F, Sabourin T, Houle S, Fortin JP, Petitclerc E, Molinaro G, Adam A (2002) Kinin receptors: functional aspects. Int Immunopharmacol 2:1729–1739PubMedCrossRefGoogle Scholar
  21. 21.
    Mathur AB, Truskey GA, Reichert WM (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 78:1725–1735PubMedCrossRefGoogle Scholar
  22. 22.
    McDonald DM, Thurston G, Baluk P (1999) Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 6:7–22PubMedCrossRefGoogle Scholar
  23. 23.
    Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761PubMedGoogle Scholar
  24. 24.
    Morel NM, Petruzzo PP, Hechtman HB, Shepro D (1990) Inflammatory agonists that increase microvascular permeability in vivo stimulate cultured pulmonary microvessel endothelial cell contraction. Inflammation 14:571–583PubMedCrossRefGoogle Scholar
  25. 25.
    Moy AB, Winter M, Kamath A, Blackwell K, Reyes G, Giaever I, Keese C, Shasby DM (2000) Histamine alters endothelial barrier function at cell-cell and cell-matrix sites. Am J Physiol Lung Cell Mol Physiol 278:L888–L898PubMedGoogle Scholar
  26. 26.
    Nieuw Amerongen GP, Draijer R, Vermeer MA, van Hinsbergh VW (1998) Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ Res 83:1115–1123PubMedGoogle Scholar
  27. 27.
    Noll T, Holschermann H, Koprek K, Gunduz D, Haberbosch W, Tillmanns H, Piper HM (1999) ATP reduces macromolecule permeability of endothelial monolayers despite increasing [Ca2+]i. Am J Physiol 276:H1892–H1901PubMedGoogle Scholar
  28. 28.
    Paradiso AM, Cheng EH, Boucher RC (1991) Effects of bradykinin on intracellular calcium regulation in human ciliated airway epithelium. Am J Physiol 261:L63–L69PubMedGoogle Scholar
  29. 29.
    Plante GE, Perreault M, Lanthier A, Marette A, Maheux P (2003) Reduction of endothelial NOS and bradykinin-induced extravasation of macromolecules in skeletal muscle of the fructose-fed rat model. Cardiovasc Res 59:963–970PubMedCrossRefGoogle Scholar
  30. 30.
    Riethmuller C, Jungmann P, Wegener J, Oberleithner H (2006) Bradykinin shifts endothelial fluid passage from para-to transcellular routes. Pflugers Arch 453:157–165PubMedCrossRefGoogle Scholar
  31. 31.
    Rippe B, Rosengren BI, Carlsson O, Venturoli D (2002) Transendothelial transport: the vesicle controversy. J Vasc Res 39:375–390PubMedCrossRefGoogle Scholar
  32. 32.
    Schaeffer RC Jr, Gong F, Bitrick MS Jr, Smith TL (1993) Thrombin and bradykinin initiate discrete endothelial solute permeability mechanisms. Am J Physiol 264:H1798–H1809PubMedGoogle Scholar
  33. 33.
    Schafer C, Walther S, Schafer M, Dieterich L, Kasseckert S, Abdallah Y, Piper HM (2003) Inhibition of contractile activation reduces reoxygenation-induced endothelial gap formation. Cardiovasc Res 58:149–155PubMedCrossRefGoogle Scholar
  34. 34.
    Schnittler HJ, Wilke A, Gress T, Suttorp N, Drenckhahn D (1990) Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. J Physiol 431:379–401PubMedGoogle Scholar
  35. 35.
    Souza DG, Pinho V, Pesquero JL, Lomez ES, Poole S, Juliano L, Correa A Jr, de ACM, Teixeira MM (2003) Role of the bradykinin B2 receptor for the local and systemic inflammatory response that follows severe reperfusion injury. Br J Pharmacol 139:129–139PubMedCrossRefGoogle Scholar
  36. 36.
    Tornel J, Madrid MI, Garcia-Salom M, Wirth KJ, Fenoy FJ (2000) Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure. Circ Res 86:589–595PubMedGoogle Scholar
  37. 37.
    Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932PubMedGoogle Scholar
  38. 38.
    Vestweber D (2000) Molecular mechanisms that control endothelial cell contacts. J Pathol 190:281–291PubMedCrossRefGoogle Scholar
  39. 39.
    Wegener J, Zink S, Rosen P, Galla H (1999) Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells. Pflugers Arch 437:925–934PubMedCrossRefGoogle Scholar
  40. 40.
    Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114:1343–1355PubMedGoogle Scholar
  41. 41.
    Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Pia Jungmann
    • 1
  • Marianne Wilhelmi
    • 1
  • Hans Oberleithner
    • 1
  • Christoph Riethmüller
    • 1
  1. 1.Institute of Physiology IIUniversity of MünsterMünsterGermany

Personalised recommendations