Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 455, Issue 3, pp 443–454 | Cite as

Inactivation of peroxisome proliferator-activated receptor isoforms α, β/δ, and γ mediate distinct facets of hypertrophic transformation of adult cardiac myocytes

  • Corinne Pellieux
  • Christophe Montessuit
  • Irène Papageorgiou
  • René Lerch
Cell and Molecular Physiology

Abstract

Inactivation of peroxisome proliferator-activated receptor (PPARs) isoforms α, β/δ, and γ mediate distinct facets of hypertrophic transformation of adult cardiac myocytes. PPARs are ligand-activated transcription factors that modulate the transcriptional regulation of fatty acid metabolism and the hypertrophic response in neonatal cardiac myocytes. The purpose of this study was to determine the role of PPAR isoforms in the morphologic and metabolic phenotype transformation of adult cardiac myocytes in culture, which, in medium containing 20% fetal calf serum, undergo hypertrophy-like cell growth associated with downregulation of regulatory proteins of fatty acid metabolism. Expression and DNA-binding activity of PPARα, PPARβ/δ, and PPARγ rapidly decreased after cell isolation and remained persistently reduced during the 14-day culture period. Cells progressively increased in size and developed both re-expression of atrial natriuretic factor and downregulation of regulatory proteins of fatty acid metabolism. Supplementation of the medium with fatty acid (oleate 0.25 mM/palmitate 0.25 mM) prevented inactivation of PPARs and downregulation of metabolic genes. Furthermore, cell size and markers of hypertrophy were markedly reduced. Selective activation of either PPARα or PPARβ/δ completely restored expression of regulatory genes of fatty acid metabolism but did not influence cardiac myocyte size and markers of hypertrophy. Conversely, activation of PPARγ prevented cardiomyocyte hypertrophy but had no effect on fatty acid metabolism. The results indicate that PPAR activity markedly influences hypertrophic transformation of adult rat cardiac myocytes. Inactivation of PPARα and PPARβ/δ accounts for downregulation of the fatty acid oxidation pathway, whereas inactivation of PPARγ enables development of hypertrophy.

Keywords

Metabolism Genes Hypertrophy Phenotype Cardiomyocyte 

Notes

Acknowledgment

This work was supported by grants from the Swiss National Science Foundations (nos. 3200-067873 and 3100B0-109212/1) and the Swiss Heart Foundation.

References

  1. 1.
    Asakawa M, Takano H, Nagai T, Uozumi H, Hasegawa H, Kubota N, Saito T, Masuda Y, Kadowaki T, Komuro I (2002) Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 105:1240–1246PubMedCrossRefGoogle Scholar
  2. 2.
    Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP (2000) Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest 105:1723–1730CrossRefGoogle Scholar
  3. 3.
    Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273PubMedCrossRefGoogle Scholar
  4. 4.
    Brandt JM, Djouadi F, Kelly DP (1998) Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 273:23786–23792PubMedCrossRefGoogle Scholar
  5. 5.
    Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE, Yang Q (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng L, Ding G, Qin Q, Xiao Y, Woods D, Chen YE, Yang Q (2004) Peroxisome proliferator-activated receptor [delta] activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun 313:277–286PubMedCrossRefGoogle Scholar
  7. 7.
    Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759PubMedCrossRefGoogle Scholar
  8. 8.
    de Vries JE, Vork MM, Roemen TH, de Jong YF, Cleutjens JP, van der Vusse GJ, van Bilsen M (1997) Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res 38:1384–1394PubMedGoogle Scholar
  9. 9.
    Donath MY, Zapf J, Eppenberger-Eberhardt M, Froesch ER, Eppenberger HM (1994) Insulin-like growth factor I stimulates myofibril development and decreases smooth muscle alpha-actin of adult cardiomyocytes. Proc Natl Acad Sci USA 91:1686–1690PubMedCrossRefGoogle Scholar
  10. 10.
    Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM (2005) Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-{gamma} Both induce cardiac hypertrophy in mice. Circ Res 97:372–379PubMedCrossRefGoogle Scholar
  11. 11.
    Dyntar D, Eppenberger-Eberhardt M, Maedler K, Pruschy M, Eppenberger HM, Spinas GA, Donath MY (2001) Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50:2105–2113PubMedCrossRefGoogle Scholar
  12. 12.
    Eppenberger-Eberhardt M, Flamme I, Kurer V, Eppenberger HM (1990) Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes. Dev Biol 139:269–278PubMedCrossRefGoogle Scholar
  13. 13.
    Eppenberger-Eberhardt M, Messerli M, Eppenberger HM, Reinecke M (1993) New occurrence of atrial natriuretic factor and storage in secretorially active granules in adult rat ventricular cardiomyocytes in long-term culture. J Mol Cell Cardiol 25:753–757PubMedCrossRefGoogle Scholar
  14. 14.
    Gilde AJ, van der Lee KA, Willemsen PH, Chinetti G, van der Leij FR, van der Vusse GJ, Staels B, van Bilsen M (2003) Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92:518–524PubMedCrossRefGoogle Scholar
  15. 15.
    Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–240PubMedCrossRefGoogle Scholar
  16. 16.
    Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95:568–578PubMedCrossRefGoogle Scholar
  17. 17.
    Irukayama-Tomobe Y, Miyauchi T, Sakai S, Kasuya Y, Ogata T, Takanashi M, Iemitsu M, Sudo T, Goto K, Yamaguchi I (2004) Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-alpha partly via blockade of c-Jun NH2-terminal kinase pathway. Circulation 109:904–910PubMedCrossRefGoogle Scholar
  18. 18.
    Jones DC, Ding X, Zhang TY, Daynes RA (2003) Peroxisome proliferator-activated receptor alpha negatively regulates T-bet transcription through suppression of p38 mitogen-activated protein kinase activation. J Immunol 171:196–203PubMedGoogle Scholar
  19. 19.
    Kanda H, Nohara R, Hasegawa K, Kishimoto C, Sasayama S (2000) A nuclear complex containing PPARalpha/RXRalpha is markedly downregulated in the hypertrophied rat left ventricular myocardium with normal systolic function. Heart Vessels 15:191–196PubMedCrossRefGoogle Scholar
  20. 20.
    Lehman JJ, Kelly DP (2002) Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 29:339–345PubMedCrossRefGoogle Scholar
  21. 21.
    Liang F, Wang F, Zhang S, Gardner DG (2003) Peroxisome proliferator activated receptor (PPAR)alpha agonists inhibit hypertrophy of neonatal rat cardiac myocytes. Endocrinology 144:4187–4194PubMedCrossRefGoogle Scholar
  22. 22.
    Montessuit C, Papageorgiou I, Campos L, Lerch R (2006) Retinoic acids increase expression of GLUT4 in dedifferentiated and hypertrophied cardiac myocytes. Basic Res Cardiol 101:27–35PubMedCrossRefGoogle Scholar
  23. 23.
    Montessuit C, Rosenblatt-Velin N, Papageorgiou I, Campos L, Pellieux C, Palma T, Lerch R (2004) Regulation of glucose transporter expression in cardiac myocytes: p38 MAPK is a strong inducer of GLUT4. Cardiovasc Res 64:94–104PubMedCrossRefGoogle Scholar
  24. 24.
    Nemoto S, Razeghi P, Ishiyama M, De Freitas G, Taegtmeyer H, Carabello BA (2005) PPAR-{gamma} agonist rosiglitazone ameliorates ventricular dysfunction in experimental chronic mitral regurgitation. Am J Physiol Heart Circ Physiol 288:H77–82PubMedCrossRefGoogle Scholar
  25. 25.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367PubMedCrossRefGoogle Scholar
  26. 26.
    Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR, Hintze TH, Lopaschuk GD, Recchia FA (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106:606–612PubMedCrossRefGoogle Scholar
  27. 27.
    Pellieux C, Aasum E, Larsen TS, Montessuit C, Papageorgiou I, Pedrazzini T, Lerch R (2006) Overexpression of angiotensinogen in the myocardium induces downregulation of the fatty acid oxidation pathway. J Mol Cell Cardiol 41:459–466PubMedCrossRefGoogle Scholar
  28. 28.
    Pellieux C, Montessuit C, Papageorgiou I, Lerch R (2005) ROS mediate AngII-induced metabolic and morphologic phenotype adaptation through PPAR inactivation. J Mol Cell Cardiol 38:1056Google Scholar
  29. 29.
    Planavila A, Laguna JC, Vazquez-Carrera M (2005) Nuclear factor-kappaB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem 280:17464–17471PubMedCrossRefGoogle Scholar
  30. 30.
    Planavila A, Rodriguez-Calvo R, Jove M, Michalik L, Wahli W, Laguna JC, Vazquez-Carrera M (2005) Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc Res 65:832–841PubMedCrossRefGoogle Scholar
  31. 31.
    Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A (2001) Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci USA 98:6668–6673PubMedCrossRefGoogle Scholar
  32. 32.
    Remondino A, Rosenblatt-Velin N, Montessuit C, Tardy I, Papageorgiou I, Dorsaz PA, Jorge-Costa M, Lerch R (2000) Altered expression of proteins of metabolic regulation during remodeling of the left ventricle after myocardial infarction. J Mol Cell Cardiol 32:2025–2034PubMedCrossRefGoogle Scholar
  33. 33.
    Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82PubMedCrossRefGoogle Scholar
  34. 34.
    Ritchie RH, Rosenkranz AC, Huynh LP, Stephenson T, Kaye DM, Dusting GJ (2004) Activation of IP prostanoid receptors prevents cardiomyocyte hypertrophy via cAMP-dependent signaling. Am J Physiol Heart Circ Physiol 287:H1179–1185PubMedCrossRefGoogle Scholar
  35. 35.
    Rosenblatt-Velin N, Lerch R, Papageorgiou I, Montessuit C (2004) Insulin resistance in adult cardiomyocytes undergoing dedifferentiation: role of GLUT4 expression and translocation. FASEB J 18:872–874PubMedGoogle Scholar
  36. 36.
    Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R (2001) Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 52:407–416PubMedCrossRefGoogle Scholar
  37. 37.
    Rosenblatt-Velin N, Montessuit C, Papagiorgiou I, Lerch R (2002) Fatty acids modulated gene expression in adult rat cardiomyocytes in culture. J Mol Cell Cardiol 34:A55CrossRefGoogle Scholar
  38. 38.
    Sack MN, Disch DL, Rockman HA, Kelly DP (1997) A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci USA 94:6438–6443PubMedCrossRefGoogle Scholar
  39. 39.
    Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842PubMedGoogle Scholar
  40. 40.
    Sakai S, Miyauchi T, Irukayama-Tomobe Y, Ogata T, Goto K, Yamaguchi I (2002) Peroxisome proliferator-activated receptor-gamma activators inhibit endothelin-1-related cardiac hypertrophy in rats. Clin Sci (Lond) 103(Suppl 48):16S–20SGoogle Scholar
  41. 41.
    Schaub MC, Hefti MA, Harder BA, Eppenberger HM (1997) Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med 75:901–920PubMedCrossRefGoogle Scholar
  42. 42.
    Schluter KD, Millar BC, McDermott BJ, Piper HM (1995) Regulation of protein synthesis and degradation in adult ventricular cardiomyocytes. Am J Physiol Cell Physiol 269:C1347–1355Google Scholar
  43. 43.
    Takano H, Nagai T, Asakawa M, Toyozaki T, Oka T, Komuro I, Saito T, Masuda Y (2000) Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-{alpha} expression in neonatal rat cardiac myocytes. Circ Res 87:596–602PubMedGoogle Scholar
  44. 44.
    van Bilsen M, Smeets PJ, Gilde AJ, van der Vusse GJ (2004) Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res 61:218–226PubMedCrossRefGoogle Scholar
  45. 45.
    van der Lee KA, Vork MM, De Vries JE, Willemsen PH, Glatz JF, Reneman RS, Van der Vusse GJ, Van Bilsen M (2000) Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res 41:41–47PubMedGoogle Scholar
  46. 46.
    Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299PubMedCrossRefGoogle Scholar
  47. 47.
    Yamamoto K, Ohki R, Lee RT, Ikeda U, Shimada K (2001) Peroxisome proliferator-activated receptor gamma activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 104:1670–1675PubMedCrossRefGoogle Scholar
  48. 48.
    Young ME, Laws FA, Goodwin GW, Taegtmeyer H (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Corinne Pellieux
    • 1
  • Christophe Montessuit
    • 1
  • Irène Papageorgiou
    • 1
  • René Lerch
    • 1
  1. 1.Department of Internal Medicine, Cardiology CenterUniversity Hospitals of GenevaGenevaSwitzerland

Personalised recommendations