Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 455, Issue 2, pp 309–321 | Cite as

Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons

  • Shin Hye Kim
  • Yu Mi Choi
  • Jin Yong Jang
  • Sungkwon Chung
  • Yun Kyung Kang
  • Myoung Kyu ParkEmail author
Cellular Neurophysiology

Abstract

Intracellular Ca2+ and Ca2+-permeable ion channels are important in regulating the firing activity and pattern of midbrain dopamine neurons, but the role of Ca2+-permeable nonselective cation channels (NSCCs) on spontaneous firing activity is unclear. Therefore, we investigated how Ca2+-permeable NSCCs modulate spontaneous firing activity and cytosolic Ca2+ concentration ([Ca2+]c) in acutely isolated midbrain dopamine neurons of the rat. Applications of voltage-dependent Ca2+ channels antagonists failed to abolish spontaneous firing activity completely, but they decreased firing rate and [Ca2+]c. However, a blockade of NSCCs by 2-APB or SKF96365 more potently suppressed spontaneous firings with a depolarization of membrane potential and strong decreases in basal [Ca2+]c levels. The depolarization of membrane potentials was attenuated by intracellular dialysis with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). NSCCs blockers inhibited oscillatory potentials and decreased basal [Ca2+]c in the presence of tetrodotoxin. Apamin, a small-conductance Ca2+-activated K+ channel inhibitor, depolarized membrane potentials and enhanced firing rates. From these data, we conclude that NSCCs not only make up the tonic Ca2+ entry pathways to uphold basal [Ca2+]c levels but also contribute to generation of spontaneous firings, thereby regulating spontaneous firing activities of the midbrain dopamine neurons.

Keywords

Dopamine neuron VOCC Nonselective cation channel (NSCC) Basal Ca2+ concentration Spontaneous firing Substantia nigra 

Notes

Acknowledgments

This work was supported by the Neurobiology Research Program from the Korea Ministry of Science and Technology (M1-0108-00-0027) and by grant no. R01-2006-000-10478-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

References

  1. 1.
    Bengtson CP, Tozzi A, Bernardi G, Mercuri NB (2004) Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurons. J Physiol 555:323–330PubMedCrossRefGoogle Scholar
  2. 2.
    Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26PubMedCrossRefGoogle Scholar
  3. 3.
    Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680PubMedCrossRefGoogle Scholar
  4. 4.
    Cardozo DL, Bean BP (1995) Voltage-dependent calcium channels in rat midbrain dopamine neurons: modulation by dopamine and GABAB receptors. J Neurophysiol 74:1137–1148PubMedGoogle Scholar
  5. 5.
    Choi YM, Kim SH, Uhm DY, Park MK (2003) Glutamate-mediated [Ca2+]c dynamics in spontaneously firing dopamine neurons of the rat substantia nigra pars compacta. J Cell Sci 116:2665–2675PubMedCrossRefGoogle Scholar
  6. 6.
    Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396PubMedCrossRefGoogle Scholar
  7. 7.
    Cui G, Okamoto T, Morikawa H (2004) Spontaneous opening of T-type Ca2+ channels contributes to the irregular firing of dopamine neurons in neonatal rats. J Neurosci 24:11079–11087PubMedCrossRefGoogle Scholar
  8. 8.
    De March Z, Giampa C, Patassini S, Bernardi G, Fusco FR (2006) Cellular localization of TRPC5 in the substantia nigra of rat. Neurosci Lett 402:35–39PubMedCrossRefGoogle Scholar
  9. 9.
    Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399:A32–A39PubMedCrossRefGoogle Scholar
  10. 10.
    Durante P, Cardenas CG, Whittaker JA, Kitai ST, Scroggs RS (2004) Low-threshold L-type calcium channels in rat dopamine neurons. J Neurophysiol 91:1450–1454PubMedCrossRefGoogle Scholar
  11. 11.
    Farkas RH, Chien PY, Nakajima S, Nakajima Y (1996) Properties of a slow nonselective cation conductance modulated by neurotensin and other neurotransmitters in midbrain dopaminergic neurons. J Neurophysiol 76:1968–1981PubMedGoogle Scholar
  12. 12.
    Farkas RH, Nakajima S, Nakajima Y (1994) Neurotensin excites basal forebrain cholinergic neurons: ionic and signal-transduction mechanisms. Proc Natl Acad Sci USA 91:2853–2857PubMedCrossRefGoogle Scholar
  13. 13.
    Fujimura K, Matsuda Y (1989) Autogenous oscillatory potentials in neurons of the guinea pig substantia nigra pars compacta in vitro. Neurosci Lett 104:53–57PubMedCrossRefGoogle Scholar
  14. 14.
    Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2866–2876PubMedGoogle Scholar
  15. 15.
    Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890PubMedGoogle Scholar
  16. 16.
    Gee CE, Benquet P, Gerber U (2003) Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus. J Physiol 546:655–664PubMedCrossRefGoogle Scholar
  17. 17.
    Goldman-Rakic PS (1999) The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46:650–661PubMedCrossRefGoogle Scholar
  18. 18.
    Guatteo E, Chung KK, Bowala TK, Bernardi G, Mercuri NB, Lipski J (2005) Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels. J Neurophysiol 94:3069–3080PubMedCrossRefGoogle Scholar
  19. 19.
    Halaszovich CR, Zitt C, Jungling E, Luckhoff A (2000) Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275:37423–37428PubMedCrossRefGoogle Scholar
  20. 20.
    Harris NC, Webb C, Greenfield SA (1989) A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents. Neuroscience 31:355–362PubMedCrossRefGoogle Scholar
  21. 21.
    Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356PubMedCrossRefGoogle Scholar
  22. 22.
    Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475–492PubMedCrossRefGoogle Scholar
  23. 23.
    Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332PubMedGoogle Scholar
  24. 24.
    Iwasaki H, Mori Y, Hara Y, Uchida K, Zhou H, Mikoshiba K (2001) 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Recept Channels 7:429–439PubMedGoogle Scholar
  25. 25.
    Jaffe EH, Marty A, Schulte A, Chow RH (1998) Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. J Neurosci 18:3548–3553PubMedGoogle Scholar
  26. 26.
    Jiang ZG, Pessia M, North RA (1994) Neurotensin excitation of rat ventral tegmental neurons. J Physiol 474:119–129PubMedGoogle Scholar
  27. 27.
    Kang Y, Kitai ST (1993a) Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra. Neurosci Res 18:195–207PubMedCrossRefGoogle Scholar
  28. 28.
    Kang Y, Kitai ST (1993b) A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neurosci Res 18:209–221PubMedCrossRefGoogle Scholar
  29. 29.
    Kim SH, Choi YM, Chung S, Uhm DY, Park MK (2004) Two different Ca2+-dependent inhibitory mechanisms of spontaneous firing by glutamate in dopamine neurons. J Neurochem 91:983–995PubMedCrossRefGoogle Scholar
  30. 30.
    Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426:285–291PubMedCrossRefGoogle Scholar
  31. 31.
    Kitai ST, Shepard PD, Callaway JC, Scroggs R (1999) Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 9:690–697PubMedCrossRefGoogle Scholar
  32. 32.
    Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB. 5. 2-Aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins (1,4,5)P3-induced Ca2+ release. J Biochem (Tokyo) 122:498–505Google Scholar
  33. 33.
    Meltzer LT, Christoffersen CL, Serpa KA (1997) Modulation of dopamine neuronal activity by glutamate receptor subtypes. Neurosci Behav Rev 21:511–518Google Scholar
  34. 34.
    Mercuri NB, Bonci A, Calabresi P, Stratta F, Stefani A, Bernardi G (1994) Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br J Pharmacol 113:831–838PubMedGoogle Scholar
  35. 35.
    Nedergaard S, Bolam JP, Greenfield SA (1988) Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra. Nature 333:174–177PubMedCrossRefGoogle Scholar
  36. 36.
    Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine and ω-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 466:727–747PubMedGoogle Scholar
  37. 37.
    Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol 450:273–301PubMedGoogle Scholar
  38. 38.
    Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717PubMedCrossRefGoogle Scholar
  39. 39.
    Park MK, Lee KK, Uhm DY (2002) Slow depletion of endoplasmic reticulum Ca2+ stores and block of store-operated Ca2+ channels by 2-aminoethoxydiphenyl borate in mouse pancreatic acinar cells. Naunyn-Schmiedeberg’s Arch Pharmacol 365:399–405CrossRefGoogle Scholar
  40. 40.
    Ping HX, Shepard PD (1996) Apamin-sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. NeuroReport 7:809–814PubMedCrossRefGoogle Scholar
  41. 41.
    Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol (Lond) 536:319CrossRefGoogle Scholar
  42. 42.
    Pruss RM, Akeson RL, Racke MM, Wilburn JL (1991) Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron 7:509–518PubMedCrossRefGoogle Scholar
  43. 43.
    Puopolo M, Raviola E, Bean BP (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27:645–656PubMedCrossRefGoogle Scholar
  44. 44.
    Richards CD, Shiroyama T, Kitai ST (1997) Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience 80:545–557PubMedCrossRefGoogle Scholar
  45. 45.
    Ross PE, Cahalan MD (1995) Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes. J Gen Physiol 106:415–444PubMedCrossRefGoogle Scholar
  46. 46.
    Sah P (1996) Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150–154PubMedCrossRefGoogle Scholar
  47. 47.
    Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance. Exp Brain Res 86:141–150PubMedCrossRefGoogle Scholar
  48. 48.
    Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655PubMedCrossRefGoogle Scholar
  49. 49.
    Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31:320–329PubMedCrossRefGoogle Scholar
  50. 50.
    Tepikin AV, Voronina SG, Gallacher DV, Petersen OH (1992) Pulsatile Ca2+ extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca2+ spiking. J Biol Chem 267:14073–14076PubMedGoogle Scholar
  51. 51.
    Tozzi A, Bengtson CP, Longone P, Carignani C, Fusco FR, Bernardi G, Mercuri NB (2003) Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 18:2133–2145PubMedCrossRefGoogle Scholar
  52. 52.
    Walker RL, Koh SD, Sergeant GP, Sanders KM, Horowitz B (2002) TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol Cell Physiol 283:C1637–C1645PubMedGoogle Scholar
  53. 53.
    Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443–3456PubMedGoogle Scholar
  54. 54.
    Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413PubMedGoogle Scholar
  55. 55.
    Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507PubMedCrossRefGoogle Scholar
  56. 56.
    Yung WH, Hausser MA, Jack JJ (1991) Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol 436:643–667PubMedGoogle Scholar
  57. 57.
    Zhang L, McCloskey MA (1995) Immunoglobulin E receptor-activated calcium conductance in rat mast cells. J Physiol 483:59–66PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shin Hye Kim
    • 1
    • 2
  • Yu Mi Choi
    • 1
    • 2
  • Jin Yong Jang
    • 1
    • 2
  • Sungkwon Chung
    • 1
    • 2
  • Yun Kyung Kang
    • 3
  • Myoung Kyu Park
    • 1
    • 2
    Email author
  1. 1.Department of PhysiologySungkyunkwan University School of MedicineSuwonRepublic of Korea
  2. 2.Center For Molecular Medicine, Samsung Biomedical Research InstituteSungkyunkwan University School of MedicineSuwonRepublic of Korea
  3. 3.Department of PathologyInje University Seoul Paik HospitalSeoulSouth Korea

Personalised recommendations