Biodiversity of voltage sensor domain proteins

Invited Review

Abstract

The six-transmembrane type voltage-gated ion channels play an essential role in neuronal excitability, muscle contraction, and secretion. The voltage sensor domain (VSD) is the key element of voltage-gated ion channels for sensing transmembrane potential, and has been studied at the levels of both biophysics and protein structure. Two recently identified proteins containing VSD without a pore domain showed unexpected biological roles: regulation of phosphatase activity and proton permeation. These proteins not only provide novel platforms to understand mechanisms of voltage sensing and ion permeation but also highlight previously unappreciated roles of membrane potential in non-neuronal cells.

Keywords

Ion channel Phosphatase Voltage sensor Proton channel Phagocytosis 

Abbreviations

VSD

voltage sensor domain

6TM

type six transmembrane type

VSOP

voltage sensor only protein

Ci-VSP

Ciona intestinalis voltage-sensor containing phosphatase

IRK

inward-rectifier potassium channel

GIRK

G-protein coupled type inward-rectifier potassium channel

HCN

hyperpolarization-activated and cyclic nucleotide-gated cation channel

PtdIns(4,5)P2

phosphatidylinositol-4,5-bisphosphate

PtdIns(3,4,5)P3

phosphatidylinositol-3,4,5-trisphosphate

PTEN

phosphatase and tensin homolog deleted on chromosome ten

PTP

protein tyrosine phosphatase

ROS

reactive oxygen species

\( O^{{ \cdot - }}_{2} \)

superoxide anion

HOCl

hydrochlorite

NADPH

nicotinamide adenine dinucleotide phosphate

References

  1. 1.
    Aggarwal SK, MacKinnon R (1996) Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16:1169–1177PubMedCrossRefGoogle Scholar
  2. 2.
    Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY, Pope S, Nobles M, Segal AW (2004) The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 427:853–858PubMedCrossRefGoogle Scholar
  3. 3.
    Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N, Krause KH (2000) A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287:138–142PubMedCrossRefGoogle Scholar
  4. 4.
    Barish ME, Baud C (1984) A voltage-gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma. J Physiol 352:243–263PubMedGoogle Scholar
  5. 5.
    Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592PubMedGoogle Scholar
  6. 6.
    Campbell RB, Liu F, Ross AH (2003) Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 278:33617–33620PubMedCrossRefGoogle Scholar
  7. 7.
    Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem 262:4065–4074PubMedGoogle Scholar
  8. 8.
    DeCoursey TE (2003) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83:475–579PubMedGoogle Scholar
  9. 9.
    DeCoursey TE, Cherny VV, Morgan D, Katz BZ, Dinauer MC (2001) The gp91phox component of NADPH oxidase is not the voltage-gated proton channel in phagocytes, but it helps. J Biol Chem 276:36063–36066PubMedCrossRefGoogle Scholar
  10. 10.
    DeCoursey TE, Morgan D, Cherny VV (2003) The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422:531–534PubMedCrossRefGoogle Scholar
  11. 11.
    Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167PubMedCrossRefGoogle Scholar
  12. 12.
    Fabiato A, Fabiato F (1977) Calcium release from the sarcoplasmic reticulum. Circ Res 40:119–129PubMedGoogle Scholar
  13. 13.
    Femling JK, Cherny VV, Morgan D, Rada B, Davis AP, Czirjak G, Enyedi P, England SK, Moreland JG, Ligeti E, Nauseef WM, DeCoursey TE (2006) The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels. J Gen Physiol 127:659–672PubMedCrossRefGoogle Scholar
  14. 14.
    Goudeau H, Depresle Y, Rosa A, Goudeau M (1994) Evidence by a voltage clamp study of an electrically mediated block to polyspermy in the egg of the ascidian Phallusia mammillata. Dev Biol 166:489–501PubMedCrossRefGoogle Scholar
  15. 15.
    Gould-Somero M, Jaffe LA, Holland LZ (1979) Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo. J Cell Biol 82:426–440PubMedCrossRefGoogle Scholar
  16. 16.
    Hegle AP, Marble DD, Wilson GF (2006) A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci USA 103:2886–2891PubMedCrossRefGoogle Scholar
  17. 17.
    Henderson LM, Chappell JB, Jones OT (1987) The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 246:325–329PubMedGoogle Scholar
  18. 18.
    Henderson LM, Meech RW (1999) Evidence that the product of the human X-linked CGD gene, gp91-phox, is a voltage-gated H(+) pathway. J Gen Physiol 114:771–786PubMedCrossRefGoogle Scholar
  19. 19.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedGoogle Scholar
  20. 20.
    Horn R (2005) Electrifying phosphatases. Sci STKE 2005:pe50PubMedCrossRefGoogle Scholar
  21. 21.
    Horn R, Ding S, Gruber HJ (2000) Immobilizing the moving parts of voltage-gated ion channels. J Gen Physiol 116:461–476PubMedCrossRefGoogle Scholar
  22. 22.
    Hu X, Stebbins CE (2006) Dynamics of the WPD loop of the Yersinia protein tyrosine phosphatase. Biophys J 91:948–956PubMedCrossRefGoogle Scholar
  23. 23.
    Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg. Nature 391:803–806PubMedCrossRefGoogle Scholar
  24. 24.
    Iwao Y, Jaffe LA (1989) Evidence that the voltage-dependent component in the fertilization process is contributed by the sperm. Dev Biol 134:446–451PubMedCrossRefGoogle Scholar
  25. 25.
    Izumi H, Marian T, Inaba K, Oka Y, Morisawa M (1999) Membrane hyperpolarization by sperm-activating and -attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. Dev Biol 213:246–256PubMedCrossRefGoogle Scholar
  26. 26.
    Jaffe LA (1976) Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261:68–71PubMedCrossRefGoogle Scholar
  27. 27.
    Jaffe LA, Cross NL (1986) Electrical regulation of sperm–egg fusion. Annu Rev Physiol 48:191–200PubMedCrossRefGoogle Scholar
  28. 28.
    Jaffe LA, Cross NL, Picheral B (1983) Studies of the voltage-dependent polyspermy block using cross-species fertilization of amphibians. Dev Biol 98:319–326PubMedCrossRefGoogle Scholar
  29. 29.
    Jaffe LA, Schlichter LC (1985) Fertilization-induced ionic conductances in eggs of the frog, Rana pipiens. J Physiol 358:299–319PubMedGoogle Scholar
  30. 30.
    Jaffe LA, Sharp AP, Wolf DP (1983) Absence of an electrical polyspermy block in the mouse. Dev Biol 96:317–323PubMedCrossRefGoogle Scholar
  31. 31.
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure od a voltage-dependent K+ channel. Nature 423:33–41PubMedCrossRefGoogle Scholar
  32. 32.
    Kapus A, Romanek R, Qu AY, Rotstein OD, Grinstein S (1993) A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J Gen Physiol 102:729–760PubMedCrossRefGoogle Scholar
  33. 33.
    Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133PubMedCrossRefGoogle Scholar
  34. 34.
    Lai HC, Grabe M, Jan YN, Jan LY (2005) The S4 voltage sensor packs against the pore domain in the KAT1 voltage-gated potassium channel. Neuron 47:395–406PubMedCrossRefGoogle Scholar
  35. 35.
    Laine M, Lin MC, Bannister JP, Silverman WR, Mock AF, Roux B, Papazian DM (2003) Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39:467–481PubMedCrossRefGoogle Scholar
  36. 36.
    Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99:323–334PubMedCrossRefGoogle Scholar
  37. 37.
    Long SB, Campbell EB, Mackinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908PubMedCrossRefGoogle Scholar
  38. 38.
    Lu Z, Klem AM, Ramu Y (2002) Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 120:663–676PubMedCrossRefGoogle Scholar
  39. 39.
    Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70:247–279PubMedCrossRefGoogle Scholar
  40. 40.
    Mannuzzu LM, Isacoff EY (2000) Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J Gen Physiol 115:257–268PubMedCrossRefGoogle Scholar
  41. 41.
    Maturana A, Arnaudeau S, Ryser S, Banfi B, Hossle JP, Schlegel W, Krause KH, Demaurex N (2001) Heme histidine ligands within gp91(phox) modulate proton conduction by the phagocyte NADPH oxidase. J Biol Chem 276:30277–30284PubMedCrossRefGoogle Scholar
  42. 42.
    Miyazaki S, Igusa Y (1981) Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations. Nature 290:702–704PubMedCrossRefGoogle Scholar
  43. 43.
    Morgan D, Cherny VV, Murphy R, Katz BZ, DeCoursey TE (2005) The pH dependence of NADPH oxidase in human eosinophils. J Physiol 569:419–431PubMedCrossRefGoogle Scholar
  44. 44.
    Morgan D, Cherny VV, Price MO, Dinauer MC, DeCoursey TE (2002) Absence of proton channels in COS-7 cells expressing functional NADPH oxidase components. J Gen Physiol 119:571–580PubMedCrossRefGoogle Scholar
  45. 45.
    Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243PubMedCrossRefGoogle Scholar
  46. 46.
    Murata Y (2005) Voltage sensor domain drives modification of phosphatase activity of the voltage-sensor containing phosphatase, Ci-VSP. Biophys J, Abstract IssueGoogle Scholar
  47. 47.
    Murphy R, DeCoursey TE (2006) Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta 1757:996–1011PubMedCrossRefGoogle Scholar
  48. 48.
    Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T, Nama S (1984) Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127PubMedCrossRefGoogle Scholar
  49. 49.
    Okamura Y, Nishino A, Murata Y, Nakajo K, Iwasaki H, Ohtsuka Y, Tanaka-Kunishima M, Takahashi N, Hara Y, Yoshida T, Nishida M, Okado H, Watari H, Meinertzhagen IA, Satoh N, Takahashi K, Satou Y, Okada Y, Mori Y (2005) Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiol Genomics 22:269–282PubMedCrossRefGoogle Scholar
  50. 50.
    Onsager L (1967) Ion passages in lipid bilayers. Science 156:541Google Scholar
  51. 51.
    Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753PubMedCrossRefGoogle Scholar
  52. 52.
    Ramsey IS, Moran MM, Chong JA, Clapham DE (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216PubMedCrossRefGoogle Scholar
  53. 53.
    Reymond A, Marigo V, Yaylaoglu MB, Leoni A, Ucla C, Scamuffa N, Caccioppoli C, Dermitzakis ET, Lyle R, Banfi S, Eichele G, Antonarakis SE, Ballabio A (2002) Human chromosome 21 gene expression atlas in the mouse. Nature 420:582–586PubMedCrossRefGoogle Scholar
  54. 54.
    Sasaki M, Takagi M, Okamura Y (2006) A voltage sensor-domain protein is a voltage-gated proton channel. Science 312:589–592PubMedCrossRefGoogle Scholar
  55. 55.
    Sokolov S, Scheuer T, Catterall WA (2005) Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47:183–189PubMedCrossRefGoogle Scholar
  56. 56.
    Soler-Llavina GJ, Chang TH, Swartz KJ (2006) Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel. Neuron 52:623–634PubMedCrossRefGoogle Scholar
  57. 57.
    Starace DM, Bezanilla F (2001) Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel. J Gen Physiol 117:469–490PubMedCrossRefGoogle Scholar
  58. 58.
    Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–553PubMedCrossRefGoogle Scholar
  59. 59.
    Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15:370–378PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki K, Yamada M, Akashi K, Fujikura T (1986) Similarity of kinetics of three types of myeloperoxidase from human leukocytes and four types from HL-60 cells. Arch Biochem Biophys 245:167–173PubMedCrossRefGoogle Scholar
  61. 61.
    Tapparel C, Reymond A, Girardet C, Guillou L, Lyle R, Lamon C, Hutter P, Antonarakis SE (2003) The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323:189–199PubMedCrossRefGoogle Scholar
  62. 62.
    Thomas RC, Meech RW (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299:826–828PubMedCrossRefGoogle Scholar
  63. 63.
    Tombola F, Pathak MM, Isacoff EY (2005) Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45:379–388PubMedCrossRefGoogle Scholar
  64. 64.
    Tombola F, Pathak MM, Isacoff EY (2006) How does voltage open an ion channel? Annu Rev Cell Dev Biol 22:23–52PubMedCrossRefGoogle Scholar
  65. 65.
    Walker SM, Downes CP, Leslie NR (2001) TPIP: a novel phosphoinositide 3-phosphatase. Biochem J 360:277–283PubMedCrossRefGoogle Scholar
  66. 66.
    Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP (2004) The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 379:301–307PubMedCrossRefGoogle Scholar
  67. 67.
    Wang D, King SM, Quill TA, Doolittle LK, Garbers DL (2003) A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol 5:1117–1122PubMedCrossRefGoogle Scholar
  68. 68.
    Weber JH, Vishnyakov A, Hambach K, Schultz A, Schultz JE, Linder JU (2004) Adenylyl cyclases from plasmodium, paramecium and tetrahymena are novel ion channel/enzyme fusion proteins. Cell Signal 16:115–125PubMedCrossRefGoogle Scholar
  69. 69.
    Weng J, Cao Y, Moss N, Zhou M (2006) Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J Biol Chem 281:15194–15200PubMedCrossRefGoogle Scholar
  70. 70.
    Wu Y, Dowbenko D, Pisabarro MT, Dillard-Telm L, Koeppen H, Lasky LA (2001) PTEN 2, a Golgi-associated testis-specific homologue of the PTEN tumor suppressor lipid phosphatase. J Biol Chem 276:21745–21753PubMedCrossRefGoogle Scholar
  71. 71.
    Yang N, Horn R (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–218PubMedCrossRefGoogle Scholar
  72. 72.
    Yoshida M, Murata M, Inaba K, Morisawa M (2002) A chemoattractant for ascidian spermatozoa is a sulfated steroid. Proc Natl Acad Sci USA 99:14831–14836PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM, Jin T, Logothetis DE (2003) PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Section of Developmental Neurophysiology, Okazaki Institute for Integrative BioscienceNational Institutes of Natural SciencesOkazakiJapan
  2. 2.National Institute for Physiological SciencesNational Institutes of Natural SciencesOkazakiJapan
  3. 3.The Graduate University for Advanced StudiesOkazakiJapan

Personalised recommendations