Pflügers Archiv

, Volume 453, Issue 2, pp 125–131

Use it or lose it: molecular evolution of sensory signaling in primates

Invited Review


Sensory organs provide key and, in many cases, species-specific information that allows animals to effectively forage, find mates, and avoid hazards. The primary sensors for the vertebrate senses of vision, taste, and smell are G-protein-coupled receptors (GPCRs) expressed by sensory receptor cells that initiate intracellular signal transduction cascades in response to activation by appropriate stimuli. The identification of sensory GPCRs and their related downstream transduction components from a variety of species has provided an essential tool for understanding the molecular evolution of sensory systems. Expansion of the number of genes encoding sensory GPCRs has, in some cases, expanded the repertoire of signals that animals detect, allowing them to occupy new niches, while, in other cases, evolution has favored a reduction in the repertoire of receptors and their cognate signal transduction components when these signals no longer provide a selective advantage. This review will focus on recent studies that have identified molecular changes in vision, smell, taste, and pheromone detection during primate evolution.


Evolution Molecular Receptors Sensory Vomeronasal Vision Smell Taste Pseudogenes Receptors G-protein-coupled 


  1. 1.
    Blakeslee AF (1932) Genetics of sensory thresholds: taste for phenyl thio carbamide. Proc Natl Acad Sci USA, 18:120–130PubMedCrossRefGoogle Scholar
  2. 2.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedCrossRefGoogle Scholar
  3. 3.
    Buck LB (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–618PubMedCrossRefGoogle Scholar
  4. 4.
    Bufe B, Breslin PA, Kuhn C, Reed DR, Tharp CD, Slack JP, Kim UK, Drayna D, Meyerhof W (2005) The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 15:322–327PubMedCrossRefGoogle Scholar
  5. 5.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  6. 6.
    Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2rs function as bitter taste receptors. Cell 100:703–711PubMedCrossRefGoogle Scholar
  7. 7.
    Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834PubMedCrossRefGoogle Scholar
  8. 8.
    Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, Ogawa S, Zufall F, Mombaerts P (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74PubMedCrossRefGoogle Scholar
  9. 9.
    Drayna D (2005) Human taste genetics. Annu Rev Genomics Hum Genet 6:217–235PubMedCrossRefGoogle Scholar
  10. 10.
    Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206PubMedCrossRefGoogle Scholar
  11. 11.
    Fischer A, Gilad Y, Man O, Paabo S (2005) Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22:432–436PubMedCrossRefGoogle Scholar
  12. 12.
    Fisher RA, Ford EB, Huxley J (1939) Taste-testing the anthropoid apes. Nature 144:750Google Scholar
  13. 13.
    Fox AL (1932) The relationship between chemical constitution and taste. Proc Natl Acad Sci USA 18:115–120PubMedCrossRefGoogle Scholar
  14. 14.
    Gilad Y, Lancet D (2003) Population differences in the human functional olfactory repertoire. Mol Biol Evol 20:307–314PubMedCrossRefGoogle Scholar
  15. 15.
    Gilad Y, Man O, Paabo S, Lancet D (2003) Human specific loss of olfactory receptor genes. Proc Natl Acad Sci USA 100:3324–3327PubMedCrossRefGoogle Scholar
  16. 16.
    Gilad Y, Wiebe V, Przeworski M, Lancet D, Paabo S (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:E5PubMedCrossRefGoogle Scholar
  17. 17.
    Go Y, Satta Y, Takenaka O, Takahata N (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170:313–326PubMedCrossRefGoogle Scholar
  18. 18.
    Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci USA 101:2156–2161PubMedCrossRefGoogle Scholar
  19. 19.
    Grus WE, Shi P, Zhang YP, Zhang J (2005) Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc Natl Acad Sci USA 102:5767–5772PubMedCrossRefGoogle Scholar
  20. 20.
    Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773PubMedCrossRefGoogle Scholar
  21. 21.
    Hunt DM, Dulai KS, Cowing JA, Julliot C, Mollon JD, Bowmaker JK, Li WH, Hewett-Emmett D (1998) Molecular evolution of trichromacy in primates. Vision Res 38:3299–3306PubMedCrossRefGoogle Scholar
  22. 22.
    Hurst LD (2002) The ka/ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487PubMedCrossRefGoogle Scholar
  23. 23.
    Jacobs GH, Neitz M, Deegan JF, Neitz J (1996) Trichromatic colour vision in new world monkeys. Nature 382:156–158PubMedCrossRefGoogle Scholar
  24. 24.
    Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M (2004) The cysteine-rich region of t1r3 determines responses to intensely sweet proteins. J Biol Chem 279:45068–45075PubMedCrossRefGoogle Scholar
  25. 25.
    Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430PubMedCrossRefGoogle Scholar
  26. 26.
    Kainz PM, Neitz J, Neitz M (1998) Recent evolution of uniform trichromacy in a new world monkey. Vision Res 38:3315–3320PubMedCrossRefGoogle Scholar
  27. 27.
    Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–1225PubMedCrossRefGoogle Scholar
  28. 28.
    Leinders-Zufall T, Brennan P, Widmayer P, S PC, Maul-Pavicic A, Jager M, Li XH, Breer H, Zufall F, Boehm T (2004) Mhc class i peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037PubMedCrossRefGoogle Scholar
  29. 29.
    Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, Zufall F (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–796PubMedCrossRefGoogle Scholar
  30. 30.
    Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA, 99:6376–6381PubMedCrossRefGoogle Scholar
  31. 31.
    Li W-H (1997) Molecular evolution. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  32. 32.
    Li X, Li W, Wang H, Cao J, Maehashi K, Huang L, Bachmanov AA, Reed DR, Legrand-Defretin V, Beauchamp GK, Brand JG (2005) Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet 1:27–35PubMedCrossRefGoogle Scholar
  33. 33.
    Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99:4692–4696PubMedCrossRefGoogle Scholar
  34. 34.
    Liman ER, Corey DP, Dulac C (1999) Trp2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96:5791–5796PubMedCrossRefGoogle Scholar
  35. 35.
    Liman ER, Innan H (2003) Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci USA 100:3328–3332PubMedCrossRefGoogle Scholar
  36. 36.
    Liman ER, Zufall F (2004) Transduction channels in the vomeronasal organ. In: Frings S, Bradley J (eds) Transduction channels in sensory cells. Wiley-VCH Verlag GmbH, Weinhem, pp 135–152CrossRefGoogle Scholar
  37. 37.
    Lindemann B (2001) Receptors and transduction in taste. Nature 413:219–225PubMedCrossRefGoogle Scholar
  38. 38.
    Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277:1–4PubMedCrossRefGoogle Scholar
  39. 39.
    Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784PubMedCrossRefGoogle Scholar
  40. 40.
    Meredith M (2001) Human vomeronasal organ function: a critical review of best and worst cases. Chem Senses 26:433–445PubMedCrossRefGoogle Scholar
  41. 41.
    Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature 385:151–154PubMedCrossRefGoogle Scholar
  42. 42.
    Miyata T, Yasunaga T (1980) Molecular evolution of mrna: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol 16:23–36PubMedCrossRefGoogle Scholar
  43. 43.
    Mombaerts P (1999) Seven-transmembrane proteins as odorant and chemosensory receptors. Science 286:707–711PubMedCrossRefGoogle Scholar
  44. 44.
    Montmayeur JP, Matsunami H (2002) Receptors for bitter and sweet taste. Curr Opin Neurobiol 12:366–371PubMedCrossRefGoogle Scholar
  45. 45.
    Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ (2005) The receptors and coding logic for bitter taste. Nature 434:225–229PubMedCrossRefGoogle Scholar
  46. 46.
    Nathans J (1999) The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24:299–312PubMedCrossRefGoogle Scholar
  47. 47.
    Nei M, Kimur S (2000) Molecular evolution and phylogenetics. Oxford University PressGoogle Scholar
  48. 48.
    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202PubMedCrossRefGoogle Scholar
  49. 49.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390PubMedCrossRefGoogle Scholar
  50. 50.
    Niimura Y, Nei M (2003) Evolution of olfactory receptor genes in the human genome, Proc Natl Acad Sci USA 100:12235–12240PubMedCrossRefGoogle Scholar
  51. 51.
    Niimura Y, Nei M (2005) Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages. Gene 346:23–28PubMedCrossRefGoogle Scholar
  52. 52.
    Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 102:6039–6044PubMedCrossRefGoogle Scholar
  53. 53.
    Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum GenetGoogle Scholar
  54. 54.
    Rodriguez I, Greer CA, Mok MY, Mombaerts P (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26:18–19PubMedCrossRefGoogle Scholar
  55. 55.
    Rodriguez I, Mombaerts P (2002) Novel human vomeronasal receptor-like genes reveal species-specific families. Curr Biol 12:R409–R411PubMedCrossRefGoogle Scholar
  56. 56.
    Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19:371–379PubMedCrossRefGoogle Scholar
  57. 57.
    Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23:292–300PubMedCrossRefGoogle Scholar
  58. 58.
    Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male–male aggression in mice deficient for trp2. Science 295:1493–1500PubMedCrossRefGoogle Scholar
  59. 59.
    Surridge AK, Osorio D, Mundy NI (2003) Evolution and selection of trichromatic vision in primate. Trends Ecol Evol 18:198–205CrossRefGoogle Scholar
  60. 60.
    Tewksbury JJ, Nabhan GP (2001) Seed dispersal. Directed deterrence by capsaicin in chilies. Nature 412:403–404PubMedCrossRefGoogle Scholar
  61. 61.
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) Trpc1, a human homolog of a drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656PubMedCrossRefGoogle Scholar
  62. 62.
    Wooding S, Bufe B, Grassi C, Howard MT, Stone AC, Vazquez M, Dunn DM, Meyerhof W, Weiss RB, Bamshad MJ (2006) Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440:930–934PubMedCrossRefGoogle Scholar
  63. 63.
    Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D (2004) Natural selection and molecular evolution in ptc, a bitter-taste receptor gene. Am J Hum Genet 74:637–646PubMedCrossRefGoogle Scholar
  64. 64.
    Wysocki CJ, Preti G (2004) Facts, fallacies, fears, and frustrations with human pheromones. Anat Rec 281A:1201–1211CrossRefGoogle Scholar
  65. 65.
    Yang H, Shi P, Zhang YP, Zhang J (2005) Composition and evolution of the v2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86:306–315PubMedCrossRefGoogle Scholar
  66. 66.
    Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503PubMedCrossRefGoogle Scholar
  67. 67.
    Young JM, Kambere M, Trask BJ, Lane RP (2005) Divergent v1r repertoires in five species: amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs. Genome Res 15:231–240PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang J, Webb DM (2003) Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl Acad Sci USA 100:8337–8341PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133PubMedGoogle Scholar
  70. 70.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang Z, Gerstein M (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14:328–335PubMedCrossRefGoogle Scholar
  72. 72.
    Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266PubMedCrossRefGoogle Scholar
  73. 73.
    Zufall F, Ukhanov K, Lucas P, Liman ER, Leinders-Zufall T (2005) Neurobiology of trpc2: from gene to behavior. Pflugers Arch 451:61–71PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Neuroscience Program, Molecular and Computational Biology Program, Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations