Pflügers Archiv

, Volume 453, Issue 1, pp 11–22

What’s new in ion transports in the cochlea?

  • Vincent Couloigner
  • Olivier Sterkers
  • Evelyne Ferrary
Invited Review


Recent advances in the field of the physiology of inner ear fluids permitted the characterization of the molecular mechanisms involved in critical processes such as the absorption of K+ through cochlear sensory hair cells (mechanoelectrical transduction) or the secretion of K+ by marginal cells of the stria vascularis. In addition, new pathways for ion circulations were evidenced. Mutations of transporters involved in some of these pathways, especially in K+ recycling through gap junction systems, and in local pH regulation, are among the most frequent etiologies of genetic deafness in humans.


Inner ear fluids Potassium Sodium Acid-base Endolymph Connexin Hearing Deafness 


  1. 1.
    Ando M, Takeuchi S (1999) Immunological identification of an inward rectifier K+ channel (Kir4.1) in the intermediate cell (melanocyte) of the cochlear stria vascularis of gerbils and rats. Cell Tissue Res 298:179–183PubMedCrossRefGoogle Scholar
  2. 2.
    Ando M, Takeuchi S (2000) mRNA encoding ‘ClC-K1, a kidney Cl(−)-channel’ is expressed in marginal cells of the stria vascularis of rat cochlea: its possible contribution to Cl(−) currents. Neurosci Lett 284:171–174PubMedCrossRefGoogle Scholar
  3. 3.
    Azuma H, Takeuchi S, Higashiyama K, Ando M, Kakigi A, Nakahira M, Yamakawa K, Takeda T (2002) Bumetanide-induced enlargement of the intercellular space in the stria vascularis requires an active Na+-K+-ATPase. Acta Otolaryngol 122:816–821PubMedCrossRefGoogle Scholar
  4. 4.
    Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F (2005) Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7:63–69PubMedCrossRefGoogle Scholar
  5. 5.
    Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061PubMedCrossRefGoogle Scholar
  6. 6.
    Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314PubMedCrossRefGoogle Scholar
  7. 7.
    Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–878PubMedCrossRefGoogle Scholar
  8. 8.
    Boone RT, Zuo C, Fan CY, Dornhoffer J (2005) Modification of atrial natriuretic peptide receptor expression in the rat inner ear. Otol Neurotol 26:534–537PubMedCrossRefGoogle Scholar
  9. 9.
    Chiba T, Marcus DC (2001) Basolateral K+ conductance establishes driving force for cation absorption by outer sulcus epithelial cells. J Membr Biol 184:101–112PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin 26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106–1111PubMedCrossRefGoogle Scholar
  11. 11.
    Comacchio F, Boggian O, Poletto E, Beghi A, Martini A, Rampazzo A (1992) Menière’s disease in congenital nephrogenic diabetes insipidus: report of two twins. Am J Otol 13:477–481PubMedGoogle Scholar
  12. 12.
    Couloigner V, Fay M, Djelidi S, Farman N, Escoubet B, Runembert I, Sterkers O, Friedlander G, Ferrary E (2001) Location and function of the epithelial Na channel in the cochlea. Am J Physiol Renal Physiol 280:F214–F222PubMedGoogle Scholar
  13. 13.
    Delpire E, Lu J, England R, Dull C, Thorne T (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22:192–195PubMedCrossRefGoogle Scholar
  14. 14.
    Dunnebier EA, Segenhout JM, Wit HP, Albers FW (1997) Two-phase endolymphatic hydrops: a new dynamic guinea pig model. Acta Otolaryngol 117:13–19PubMedCrossRefGoogle Scholar
  15. 15.
    Erichsen S, Berger S, Schmid W, Stierna P, Hultcrantz M (2001) Na,K-ATPase expression in the mouse cochlea is not dependent on the mineralocorticoid receptor. Hear Res 160:37–46PubMedCrossRefGoogle Scholar
  16. 16.
    Fukushima M, Kitahara T, Fuse Y, Uno Y, Doi K, Kubo T (2004) Changes in aquaporin expression in the inner ear of the rat after i.p. injection of steroids. Acta Otolaryngol Suppl 553:13–18PubMedCrossRefGoogle Scholar
  17. 17.
    Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B (2004) Deafness in claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24:7051–7062PubMedCrossRefGoogle Scholar
  18. 18.
    Guipponi M, Vuagniaux G, Wattenhofer M, Shibuya K, Vazquez M, Dougherty L, Scamuffa N, Guida E, Okui M, Rossier C, Hancock M, Buchet K, Reymond A, Hummler E, Marzella PL, Kudoh J, Shimizu N, Scott HS, Antonarakis SE, Rossier BC (2002) The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet 11:2829–2836PubMedCrossRefGoogle Scholar
  19. 19.
    Hibino H, Higashi-Shingai K, Fujita A, Iwai K, Ishii M, Kurachi Y (2004) Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur J Neurosci 19:76–84PubMedCrossRefGoogle Scholar
  20. 20.
    Higashiyama K, Takeuchi S, Azuma H, Sawada S, Yamakawa K, Kakigi A, Takeda T (2003) Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na+ transport. Hear Res 186:1–9PubMedCrossRefGoogle Scholar
  21. 21.
    Huang D, Chen P, Chen S, Nagura M, Lim DJ, Lin X (2002) Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea. Hear Res 165:85–95PubMedCrossRefGoogle Scholar
  22. 22.
    Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez-Soriano J, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90PubMedCrossRefGoogle Scholar
  23. 23.
    Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32:163–166PubMedCrossRefGoogle Scholar
  24. 24.
    Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S (2004) Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117:5087–5096PubMedCrossRefGoogle Scholar
  25. 25.
    Kitano H, Takeda T, Suzuki M, Kitanishi T, Yazawa Y, Kitajima K, Kimura H, Tooyama I (1997) Vasopressin and oxytocin receptor mRNAs are expressed in the rat inner ear. Neuroreport 8:2289–2292PubMedCrossRefGoogle Scholar
  26. 26.
    Konishi T, Hamrick PE, Walsh PJ (1978) Ion transport in the cochlea of guinea pig. I. Potassium and sodium transport. Acta Otolaryngol 86:22–34PubMedCrossRefGoogle Scholar
  27. 27.
    Kudo T, Kure S, Ikeda K, Xia AP, Katori Y, Suzuki M, Kojima K, Ichinohe A, Suzuki Y, Aoki Y, Kobayashi T, Matsubara Y (2003) Transgenic expression of a dominant-negative connexin 26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum Mol Genet 12:995–1004PubMedCrossRefGoogle Scholar
  28. 28.
    Kumagami H, Loewenheim H, Beitz E, Wild K, Schwartz H, Yamashita K, Schultz J, Paysan J, Zenner HP, Ruppersberg JP (1998) The effect of anti-diuretic hormone on the endolymphatic sac of the inner ear. Pflugers Arch 436:970–975PubMedCrossRefGoogle Scholar
  29. 29.
    Lagostena L, Ashmore JF, Kachar B, Mammano F (2001) Purinergic control of intercellular communication between Hensen’s cells of the guinea-pig cochlea. J Physiol 531:693–706PubMedCrossRefGoogle Scholar
  30. 30.
    Lecain E, Sauvaget E, Crisanti P, Van Den Abbeele T, Huy PT (1999) Potassium channel ether a go-go mRNA expression in the spiral ligament of the rat. Hear Res 133:133–138PubMedCrossRefGoogle Scholar
  31. 31.
    Lee JH, Marcus DC (2001) Estrogen acutely inhibits ion transport by isolated stria vascularis. Hear Res 158:123–130PubMedCrossRefGoogle Scholar
  32. 32.
    Lee JH, Marcus DC (2002) Nongenomic effects of corticosteroids on ion transport by stria vascularis. Audiol Neurootol 7:100–106PubMedCrossRefGoogle Scholar
  33. 33.
    Lee JH, Marcus DC (2003) Endolymphatic sodium homeostasis by Reissner’s membrane. Neuroscience 119:3–8PubMedCrossRefGoogle Scholar
  34. 34.
    Lee JH, Chiba T, Marcus DC (2001) P2X2 receptor mediates stimulation of parasensory cation absorption by cochlear outer sulcus cells and vestibular transitional cells. J Neurosci 21:9168–9174PubMedGoogle Scholar
  35. 35.
    Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233–31237PubMedCrossRefGoogle Scholar
  36. 36.
    Liang F, Hu W, Schulte BA, Mao C, Qu C, Hazen-Martin DJ, Shen Z (2004) Identification and characterization of an L-type Cav1.2 channel in spiral ligament fibrocytes of gerbil inner ear. Brain Res Mol Brain Res 125:40–46PubMedCrossRefGoogle Scholar
  37. 37.
    Lohuis PJ, Klis SF, Klop WM, van Emst MG, Smoorenburg GF (1999) Signs of endolymphatic hydrops after perilymphatic perfusion of the guinea pig cochlea with cholera toxin; a pharmacological model of acute endolymphatic hydrops. Hear Res 37:103–113CrossRefGoogle Scholar
  38. 38.
    Marcus DC, Sunose H, Liu J, Bennett T, Shen Z, Scofield MA, Ryan AF (1998) Protein kinase C mediates P2U purinergic receptor inhibition of K+ channel in apical membrane of strial marginal cells. Hear Res 115:82–92PubMedCrossRefGoogle Scholar
  39. 39.
    Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407PubMedGoogle Scholar
  40. 40.
    Minowa O, Ikeda K, Sugitani Y, Oshima T, Nakai S, Katori Y, Suzuki M, Furukawa M, Kawase T, Zheng Y, Ogura M, Asada Y, Watanabe K, Yamanaka H, Gotoh S, Nishi-Takeshima M, Sugimoto T, Kikuchi T, Takasaka T, Noda T (1999) Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285:1408–1411PubMedCrossRefGoogle Scholar
  41. 41.
    Mizuta K, Iwasa KH, Tachibana M, Benos DJ, Lim DJ (1995) Amiloride-sensitive Na+ channel-like immunoreactivity in the luminal membrane of some non-sensory epithelia of the inner ear. Hear Res 88:199–205 (erratum in: Hear Res 98:180, 1996)PubMedCrossRefGoogle Scholar
  42. 42.
    Mori N, Shugyo A, Asai H (1989) The effect of arginine-vasopressin and its analogues upon the endocochlear potential in the guinea pig. Acta Otolaryngol 107:80–84PubMedCrossRefGoogle Scholar
  43. 43.
    Nagata K, Duggan A, Kumar G, Garcia-Anoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052–61PubMedCrossRefGoogle Scholar
  44. 44.
    Nouvian R, Ruel J, Wang J, Guitton MJ, Pujol R, Puel JL (2003) Degeneration of sensory outer hair cells following pharmacological blockade of cochlear KCNQ channels in the adult guinea pig. Eur J Neurosci 17:2553–2562PubMedCrossRefGoogle Scholar
  45. 45.
    Piazza V, Beltramello M, Menniti M, Colao E, Malatesta P, Argento R, Chiarella G, Gallo LV, Catalano M, Perrotti N, Mammano F, Cassandro E (2005) Functional analysis of R75Q mutation in the gene coding for Connexin 26 identified in a family with nonsyndromic hearing loss. Clin Genet 68:161–166PubMedCrossRefGoogle Scholar
  46. 46.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  47. 47.
    Rivas A, Francis HW (2005) Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange-Nielsen syndrome. Otol Neurotol 26:415–424PubMedCrossRefGoogle Scholar
  48. 48.
    Ruttiger L, Sausbier M, Zimmermann U, Winter H, Braig C, Engel J, Knirsch M, Arntz C, Langer P, Hirt B, Muller M, Kopschall I, Pfister M, Munkner S, Rohbock K, Pfaff I, Rusch A, Ruth P, Knipper M (2004) Deletion of the Ca2+-activated potassium (BK) alpha-subunit but not the BKbeta1-subunit leads to progressive hearing loss. Proc Natl Acad Sci USA 101:12922–12927PubMedCrossRefGoogle Scholar
  49. 49.
    Sabag AD, Dagan O, Avraham KB (2005) Connexins in hearing loss: a comprehensive overview. J Basic Clin Physiol Pharmacol 16:101–116PubMedGoogle Scholar
  50. 50.
    Sawada S, Takeda T, Kitano H, Takeuchi S, Kakigi A, Azuma H (2002) Aquaporin-2 regulation by vasopressin in the rat inner ear. Neuroreport 13:1127-1129PubMedCrossRefGoogle Scholar
  51. 51.
    Shen Z, Liang F, Hazen-Martin DJ, Schulte BA (2004) BK channels mediate the voltage-dependent outward current in type I spiral ligament fibrocytes. Hear Res 187:35–43PubMedCrossRefGoogle Scholar
  52. 52.
    So E, Kikuchi T, Ishimaru K, Miyabe Y, Kobayashi T (2001) Immunolocalization of voltage-gated potassium channel Kv3.1b subunit in the cochlea. Neuroreport 12:2761–2765PubMedCrossRefGoogle Scholar
  53. 53.
    Spicer SS, Schulte BA (1998) Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res 118:1–12PubMedCrossRefGoogle Scholar
  54. 54.
    Spiess AC, Lang H, Schulte BA, Spicer SS, Schmiedt RA (2002) Effects of gap junction uncoupling in the gerbil cochlea. Laryngoscope 112:1635–1641PubMedCrossRefGoogle Scholar
  55. 55.
    Sterkers O, Ferrary E, Amiel C (1988) Production of inner ear fluids. Physiol Rev 68:1083–1128PubMedGoogle Scholar
  56. 56.
    Sugahara K, Shimogori H, Okuda T, Takemoto T, Hashimoto M, Yamashita H (2004) Cochlear administration of adenosine triphosphate facilitates recovery from acoustic trauma (temporary threshold shift). ORL J Otorhinolaryngol Relat Spec 66:80–84PubMedGoogle Scholar
  57. 57.
    Tabuchi K, Suzuki M, Mizuno A, Hara A (2005) Hearing impairment in TRPV4 knockout mice. Neurosci Lett 382:304–308PubMedCrossRefGoogle Scholar
  58. 58.
    Takeda T, Sawada S, Takeda S, Kitano H, Suzuki M, Kakigi A, Takeuchi S (2003) The effects of V2 antagonist (OPC-31260) on endolymphatic hydrops. Hear Res 182:9–18PubMedCrossRefGoogle Scholar
  59. 59.
    Takeuchi S, Irimajiri A (1996) Maxi-K+ channel in plasma membrane of basal cells dissociated from the stria vascularis of gerbils. Hear Res 95:18–25PubMedCrossRefGoogle Scholar
  60. 60.
    Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin 30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21PubMedCrossRefGoogle Scholar
  61. 61.
    Vetter DE, Mann JR, Wangemann P, Liu J, McLaughlin KJ, Lesage F, Marcus DC, Lazdunski M, Heinemann SF, Barhanin J (1996) Inner ear defects induced by null mutation of the isk gene. Neuron 17:1251–1264PubMedCrossRefGoogle Scholar
  62. 62.
    Wang HL, Chang WT, Li AH, Yeh TH, Wu CY, Chen MS, Huang PC (2003) Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J Neurochem 84:735–742PubMedCrossRefGoogle Scholar
  63. 63.
    Wang JC, Raybould NP, Luo L, Ryan AF, Cannell MB, Thorne PR, Housley GD (2003) Noise induces up-regulation of P2X2 receptor subunit of ATP-gated ion channels in the rat cochlea. Neuroreport 14:817–823PubMedCrossRefGoogle Scholar
  64. 64.
    Wangemann P (2002) Adrenergic and muscarinic control of cochlear endolymph production. Adv Otorhinolaryngol 59:42–50PubMedGoogle Scholar
  65. 65.
    Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9PubMedCrossRefGoogle Scholar
  66. 66.
    Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJ, Lee JH, Everett LA, Wall SM, Royaux IE, Green ED, Marcus DC (2004) Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med 2:30PubMedCrossRefGoogle Scholar
  67. 67.
    Yeh TH, Herman P, Tsai MC, Tran Ba Huy P, Van Den Abbeele T (1998) A cationic nonselective stretch-activated channel in the Reissner’s membrane of the guinea pig cochlea. Am J Physiol 274:C566–C576PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Vincent Couloigner
    • 1
    • 2
  • Olivier Sterkers
    • 1
    • 3
  • Evelyne Ferrary
    • 1
    • 3
  1. 1.Inserm EMI U-0112Faculté Xavier BichatParisFrance
  2. 2.Pediatric ENT DepartmentHôpital Necker–Enfants MaladesParisFrance
  3. 3.ENT DepartmentHôpital BeaujonParisFrance

Personalised recommendations