Pflügers Archiv

, Volume 452, Issue 5, pp 513–537 | Cite as

Pharmacology of P2X channels

  • Joel R. GeverEmail author
  • Debra A. Cockayne
  • Michael P. Dillon
  • Geoffrey Burnstock
  • Anthony P. D. W. Ford
Invited review


Significant progress in understanding the pharmacological characteristics and physiological importance of homomeric and heteromeric P2X channels has been achieved in recent years. P2X channels, gated by ATP and most likely trimerically assembled from seven known P2X subunits, are present in a broad distribution of tissues and are thought to play an important role in a variety of physiological functions, including peripheral and central neuronal transmission, smooth muscle contraction, and inflammation. The known homomeric and heteromeric P2X channels can be distinguished from each other on the basis of pharmacological differences when expressed recombinantly in cell lines, but whether this pharmacological classification holds true in native cells and in vivo is less well-established. Nevertheless, several potent and selective P2X antagonists have been discovered in recent years and shown to be efficacious in various animal models including those for visceral organ function, chronic inflammatory and neuropathic pain, and inflammation. The recent advancement of drug candidates targeting P2X channels into human trials, confirms the medicinal exploitability of this novel target family and provides hope that safe and effective medicines for the treatment of disorders involving P2X channels may be identified in the near future.


P2X Purinergic ATP Ion channel Antagonist 


  1. 1.
    Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475PubMedGoogle Scholar
  2. 2.
    Alcaraz L, Baxter A, Bent J, Bowers K, Braddock M, Cladingboel D, Donald D, Fagura M, Furber M, Laurent C, Lawson M, Mortimore M, McCormick M, Roberts N, Robertson M (2003) Novel P2X7 receptor antagonists. Bioorg Med Chem Lett 13:4043–4046PubMedGoogle Scholar
  3. 3.
    Alexander K, Niforatos W, Bianchi B, Burgard EC, Lynch KJ, Kowaluk EA, Jarvis MF, Van Biesen T (1999) Allosteric modulation and accelerated resensitization of human P2X3 receptors by cibacron blue. J Pharmacol Exp Ther 291:1135–1142PubMedGoogle Scholar
  4. 4.
    Aschrafi A, Sadtler S, Niculescu C, Rettinger J, Schmalzing G (2004) Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J Mol Biol 342:333–343PubMedGoogle Scholar
  5. 5.
    Banfi C, Ferrario S, De Vincenti O, Ceruti S, Fumagalli M, Mazzola A, D’Ambrosi N, Volonte C, Fratto P, Vitali E, Burnstock G, Beltrami E, Parolari A, Polvani G, Biglioli P, Tremoli E, Abbracchio MP (2005) P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFα and potential role in myocardial cell death. J Mol Cell Cardiol 39:929–939PubMedGoogle Scholar
  6. 6.
    Baraldi PG, Nuñez MC, Morelli A, Falzoni S, Di Virgilio F, Romagnoli R (2003) Synthesis and biological activity of N-arylpiperazine-modified analogues of KN-62, a potent antagonist of the purinergic P2X7 receptor. J Med Chem 46:1318–1329PubMedGoogle Scholar
  7. 7.
    Barclay J, Patel S, Dorn G, Wotherspoon G, Moffatt S, Eunson L, Abdel’al S, Natt F, Hall J, Winter J, Bevan S, Wishart W, Fox A, Ganju P (2002) Functional downregulation of P2X3 receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci 22:8139–8147PubMedGoogle Scholar
  8. 8.
    Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17:5297–5304PubMedGoogle Scholar
  9. 9.
    Baricordi OR, Ferrari D, Melchiorri L, Chiozzi P, Hanau S, Chiari E, Rubini M, Di Virgilio F (1996) An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 87:682–690PubMedGoogle Scholar
  10. 10.
    Barrera NP, Ormond SJ, Henderson RM, Murrell-Lagnado RD, Edwardson JM (2005) Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. J Biol Chem 280:10759–10765PubMedGoogle Scholar
  11. 11.
    Baxter A, Bent J, Bowers K, Braddock M, Brough S, Fagura M, Lawson M, McInally T, Mortimore M, Robertson M, Weaver R, Webborn P (2003) Hit-to-lead studies: the discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg Med Chem Lett 13:4047–4050PubMedGoogle Scholar
  12. 12.
    Bertrand PP, Bornstein JC (2002) ATP as a putative sensory mediator: activation of intrinsic sensory neurons of the myenteric plexus via P2X receptors. J Neurosci 22:4767–4775PubMedGoogle Scholar
  13. 13.
    Bian X, Ren J, DeVries M, Schnegelsberg B, Cockayne DA, Ford APDW, Galligan JJ (2003) Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 551:309–322PubMedGoogle Scholar
  14. 14.
    Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF, van Biesen T (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376:127–138PubMedGoogle Scholar
  15. 15.
    Birder LA, Ruan HZ, Chopra B, Xiang Z, Barrick S, Buffington CA, Roppolo JR, Ford APDW, de Groat WC, Burnstock G (2004) Alterations in P2X and P2Y purinergic receptor expression in urinary bladder from normal cats and cats with interstitial cystitis. Am J Physiol Renal Physiol 287:F1084–F1091PubMedGoogle Scholar
  16. 16.
    Blanchard DK, Wei S, Duan C, Pericle F, Diaz JI, Djeu JY (1995) Role of extracellular adenosine triphosphate in the cytotoxic T-lymphocyte-mediated lysis of antigen presenting cells. Blood 85:3173–3182PubMedGoogle Scholar
  17. 17.
    Bo X, Jiang LH, Wilson HL, Kim M, Burnstock G, Surprenant A, North RA (2003) Pharmacological and biophysical properties of the human P2X5 receptor. Mol Pharmacol 63:1407–1416PubMedGoogle Scholar
  18. 18.
    Bo X, Kim M, Nori SL, Schoepfer R, Burnstock G, North RA (2003) Tissue distribution of P2X4 receptors studied with an ectodomain antibody. Cell Tissue Res 313:159–165PubMedGoogle Scholar
  19. 19.
    Bo X, Schoepfer R, Burnstock G (2000) Molecular cloning and characterization of a novel ATP P2X receptor subtype from embryonic chick skeletal muscle. J Biol Chem 275:14401–14407PubMedGoogle Scholar
  20. 20.
    Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett 375:129–133PubMedGoogle Scholar
  21. 21.
    Bobanovic LK, Royle SJ, Murrell-Lagnado RD (2002) P2X receptor trafficking in neurons is subunit specific. J Neurosci 22:4814–4824PubMedGoogle Scholar
  22. 22.
    Boue-Grabot E, Emerit MB, Toulme E, Seguela P, Garret M (2004) Cross-talk and co-trafficking between ρ1/GABA receptors and ATP-gated channels. J Biol Chem 279:6967–6975PubMedGoogle Scholar
  23. 23.
    Bradbury EJ, Burnstock G, McMahon SB (1998) The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci 12:256–268PubMedGoogle Scholar
  24. 24.
    Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523PubMedGoogle Scholar
  25. 25.
    Brandle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner HP, Glowatzki E (1997) Desensitization of the P2X2 receptor controlled by alternative splicing. FEBS Lett 404:294–298PubMedGoogle Scholar
  26. 26.
    Brouns I, Adriaensen D, Burnstock G, Timmermans JP (2000) Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am J Respir Cell Mol Biol 23:52–61PubMedGoogle Scholar
  27. 27.
    Brouns I, Van Genechten J, Hayashi H, Gajda M, Gomi T, Burnstock G, Timmermans JP, Adriaensen D (2003) Dual sensory innervation of pulmonary neuroepithelial bodies. Am J Respir Cell Mol Biol 28:275–285PubMedGoogle Scholar
  28. 28.
    Brown SG, Townsend-Nicholson A, Jacobson KA, Burnstock G, King BF (2002) Heteromultimeric P2X1/2 receptors show a novel sensitivity to extracellular pH. J Pharmacol Exp Ther 300:673–680PubMedGoogle Scholar
  29. 29.
    Buell G, Chessell IP, Michel AD, Collo G, Salazzo M, Herren S, Gretener D, Grahames C, Kaur R, Kosco-Vilbois MH, Humphrey PPA (1998) Blockade of human P2X7 receptor function with a monoclonal antibody. Blood 92:3521–3528PubMedGoogle Scholar
  30. 30.
    Buell G, Lewis C, Collo G, North RA, Surprenant A (1996) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15:55–62PubMedGoogle Scholar
  31. 31.
    Bulanova E, Budagian V, Orinska Z, Hein M, Petersen F, Thon L, Adam D, Bulfone-Paus S (2005) Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells. J Immunol 174:3880–3890PubMedGoogle Scholar
  32. 32.
    Burgard EC, Niforatos W, Van Biesen T, Lynch KJ, Kage KL, Touma E, Kowaluk EA, Jarvis MF (2000) Competitive antagonism of recombinant P2X2/3 receptors by 2′, 3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP). Mol Pharmacol 58:1502–1510PubMedGoogle Scholar
  33. 33.
    Burgard EC, Niforatos W, Van Biesen T, Lynch KJ, Touma E, Metzger RE, Kowaluk EA, Jarvis MF (1999) P2X receptor-mediated ionic currents in dorsal root ganglion neurons. J Neurophysiol 82:1590–1598PubMedGoogle Scholar
  34. 34.
    Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581PubMedGoogle Scholar
  35. 35.
    Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118Google Scholar
  36. 36.
    Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194:335–342PubMedGoogle Scholar
  37. 37.
    Burnstock G (2001) Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci 22:182–188PubMedGoogle Scholar
  38. 38.
    Burnstock G (2003) Purinergic receptors in the nervous system. In Schwiebert EM (ed) Current topics in membranes. Purinergic receptors and signaling, vol. 54. Academic, San Diego, pp 307–368Google Scholar
  39. 39.
    Burnstock G, Cocks T, Crowe R, Kasakov L (1978) Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol 63:125–138PubMedGoogle Scholar
  40. 40.
    Burnstock G, Dumsday B, Smythe A (1972) Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol 44:451–461PubMedGoogle Scholar
  41. 41.
    Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440PubMedGoogle Scholar
  42. 42.
    Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304PubMedCrossRefGoogle Scholar
  43. 43.
    Burnstock G, Lavin S (2002) Interstitial cells of Cajal and purinergic signalling. Auton Neurosci 97:68–72PubMedGoogle Scholar
  44. 44.
    Burton LD, Housley GD, Salih SG, Jarlebark L, Christie DL, Greenwood D (2000) P2X2 receptor expression by interstitial cells of Cajal in vas deferens implicated in semen emission. Auton Neurosci 84:147–161PubMedGoogle Scholar
  45. 45.
    Calvert JA, Evans RJ (2004) Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice. Mol Pharmacol 65:139–148PubMedGoogle Scholar
  46. 46.
    Calvert RC, Shabbir M, Thompson CS, Mikhailidis DP, Morgan RJ, Burnstock G (2004) Immunocytochemical and pharmacological characterisation of P2-purinoceptor-mediated cell growth and death in PC-3 hormone refractory prostate cancer cells. Anticancer Res 24:2853–2859PubMedGoogle Scholar
  47. 47.
    Cascio M (2004) Structure and function of the glycine receptor and related nicotinicoid receptors. J Biol Chem 279:19383–19386PubMedGoogle Scholar
  48. 48.
    Castelucci P, Robbins HL, Poole DP, Furness JB (2002) The distribution of purine P2X2 receptors in the guinea-pig enteric nervous system. Histochem Cell Biol 117:415–422PubMedGoogle Scholar
  49. 49.
    Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Seguela P (2002) ADP and AMP induce interleukin-1β release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci 22:3061–3069PubMedGoogle Scholar
  50. 50.
    Chen C, Parker MS, Barnes AP, Deininger P, Bobbin RP (2000) Functional expression of three P2X2 receptor splice variants from guinea pig cochlea. J Neurophysiol 83:1502–1509PubMedGoogle Scholar
  51. 51.
    Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377:428–431PubMedGoogle Scholar
  52. 52.
    Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CBA, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396PubMedGoogle Scholar
  53. 53.
    Chessell IP, Michel AD, Humphrey PPA (1998) Effects of antagonists at the human recombinant P2X7 receptor. Br J Pharmacol 124:1314–1320PubMedGoogle Scholar
  54. 54.
    Chessell IP, Simon J, Hibell AD, Michel AD, Barnard EA, Humphrey PPA (1998) Cloning and functional characterisation of the mouse P2X7 receptor. FEBS Lett 439:26–30PubMedGoogle Scholar
  55. 55.
    Cheung KK, Burnstock G (2002) Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis. J Comp Neurol 443:368–382PubMedGoogle Scholar
  56. 56.
    Cheung KK, Chan WY, Burnstock G (2005) Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience 133:937–945PubMedGoogle Scholar
  57. 57.
    Clyne JD, Brown TC, Hume RI (2003) Expression level dependent changes in the properties of P2X2 receptors. Neuropharmacology 44:403–412PubMedGoogle Scholar
  58. 58.
    Clyne JD, LaPointe LD, Hume RI (2002) The role of histidine residues in modulation of the rat P2X2 purinoceptor by zinc and pH. J Physiol 539:347–359PubMedGoogle Scholar
  59. 59.
    Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford APDW (2005) P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567:621–639PubMedGoogle Scholar
  60. 60.
    Cockayne DA, Hamilton SG, Zhu Q-M, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford APDW (2000) Urinary bladder hyporeflexia and reduced pain-related behavior in P2X3-deficient mice. Nature 407:1011–1015PubMedGoogle Scholar
  61. 61.
    Collet C, Strube C, Csernoch L, Mallouk N, Ojeda C, Allard B, Jacquemond V (2002) Effects of extracellular ATP on freshly isolated mouse skeletal muscle cells during pre-natal and post-natal development. Pflugers Arch 443:771–778PubMedGoogle Scholar
  62. 62.
    Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277–1284PubMedGoogle Scholar
  63. 63.
    Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507PubMedGoogle Scholar
  64. 64.
    Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479:171–185PubMedGoogle Scholar
  65. 65.
    Cook SP, Rodland KD, McCleskey EW (1998) A memory for extracellular Ca2+ by speeding recovery of P2X receptors from desensitization. J Neurosci 18:9238–9244PubMedGoogle Scholar
  66. 66.
    Davies DL, Kochegarov AA, Kuo ST, Kulkarni AA, Woodward JJ, King BF, Alkana RL (2005) Ethanol differentially affects ATP-gated P2X3 and P2X4 receptor subtypes expressed in Xenopus oocytes. Neuropharmacology 49:243–253PubMedGoogle Scholar
  67. 67.
    Dawson GR, Wafford KA, Smith A, Marshall GR, Bayley PJ, Schaeffer JM, Meinke PT, McKernan RM (2000) Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the γ-aminobutyric acidA receptor. J Pharmacol Exp Ther 295:1051–1060PubMedGoogle Scholar
  68. 68.
    Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TFC, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152PubMedGoogle Scholar
  69. 69.
    Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600PubMedGoogle Scholar
  70. 70.
    Diaz-Hernandez M, Cox JA, Migita K, Haines W, Egan TM, Voigt MM (2002) Cloning and characterization of two novel zebrafish P2X receptor subunits. Biochem Biophys Res Commun 295:849–853PubMedGoogle Scholar
  71. 71.
    Ding S, Sachs F (1999) Ion permeation and block of P2X2 purinoceptors: single channel recordings. J Membr Biol 172:215–223PubMedGoogle Scholar
  72. 72.
    Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJC, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49PubMedGoogle Scholar
  73. 73.
    Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon mammalian heart. J Physiol 68:213–237PubMedGoogle Scholar
  74. 74.
    Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328PubMedGoogle Scholar
  75. 75.
    Dunn PM, Blakeley AGH (1988) Suramin: a reversible P2-purinoceptor antagonist in the mouse vas deferens. Br J Pharmacol 93:243–245PubMedGoogle Scholar
  76. 76.
    Dunn PM, Liu M, Zhong Y, King BF, Burnstock G (2000) Diinosine pentaphosphate: an antagonist which discriminates between recombinant P2X3 and P2X2/3 receptors and between two P2X receptors in rat sensory neurones. Br J Pharmacol 130:1378–1384PubMedGoogle Scholar
  77. 77.
    Dunn PM, Zhong Y, Burnstock G (2001) P2X receptors in peripheral neurons. Prog Neurobiol 65:107–134PubMedGoogle Scholar
  78. 78.
    Ennion S, Hagan S, Evans RJ (2000) The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J Biol Chem 275:29361–29367Google Scholar
  79. 79.
    Erhardt JA, Pillarisetti K, Toomey JR (2003) Potentiation of platelet activation through the stimulation of P2X1 receptors. J Thromb Haemost 1:2626–2635PubMedGoogle Scholar
  80. 80.
    Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2X purinoceptors). Mol Pharmacol 48:178–183PubMedGoogle Scholar
  81. 81.
    Evans RJ, Lewis C, Virginio C, Lundstrom K, Buell G, Surprenant A, North RA (1996) Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol 497:413-422PubMedGoogle Scholar
  82. 82.
    Falzoni S, Munerati M, Ferrari D, Spisani S, Moretti S, Di Virgilio F (1995) The purinergic P2Z receptor of human macrophage cells. Characterization and possible physiological role. J Clin Invest 95:1207–1216PubMedCrossRefGoogle Scholar
  83. 83.
    Faria RX, DeFarias FP, Alves LA (2005) Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol Cell Physiol 288:C260-C271PubMedGoogle Scholar
  84. 84.
    Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J Physiol 505:503–511PubMedGoogle Scholar
  85. 85.
    Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F (1997) Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458PubMedGoogle Scholar
  86. 86.
    Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499PubMedGoogle Scholar
  87. 87.
    Fisher JA, Girdler G, Khakh BS (2004) Time-resolved measurement of state-specific P2X2 ion channel cytosolic gating motions. J Neurosci 24:10475–10487PubMedGoogle Scholar
  88. 88.
    Ford APDW, Gever JR, Nunn PA, Zhong Y, Cefalu JS, Dillon MP, Cockayne DA (2006) Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br J Pharmacol 147:S132–S143PubMedGoogle Scholar
  89. 89.
    Ford KK, Matchett M, Krause JE, Yu W (2005) The P2X3 antagonist P1, P5-di[inosine-5′] pentaphosphate binds to the desensitized state of the receptor in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 315:405–413PubMedGoogle Scholar
  90. 90.
    Franke H, Bringmann A, Pannicke T, Krügel U, Grosche J, Reichenbach A, Illes P (2001) P2 receptors on macroglial cells: functional implications for gliosis. Drug Dev Res 53:140–147Google Scholar
  91. 91.
    Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156PubMedGoogle Scholar
  92. 92.
    Fu XW, Nurse CA, Cutz E (2004) Expression of functional purinergic receptors in pulmonary neuroepithelial bodies and their role in hypoxia chemotransmission. Biol Chem 385:275–284PubMedGoogle Scholar
  93. 93.
    Fujii K (1988) Evidence for adenosine triphosphate as an excitatory transmitter in guinea-pig, rabbit and pig urinary bladder. J Physiol 404:39–52PubMedGoogle Scholar
  94. 94.
    Galligan JJ (2004) Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. Br J Pharmacol 141:1294–1302PubMedGoogle Scholar
  95. 95.
    Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stuhmer W (1997) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51:109–118PubMedGoogle Scholar
  96. 96.
    Garcia-Guzman M, Soto F, Laube B, Stuhmer W (1996) Molecular cloning and functional expression of a novel rat heart P2X purinoceptor. FEBS Lett 388:123–127PubMedGoogle Scholar
  97. 97.
    Garcia-Guzman M, Stuhmer W, Soto F (1997) Molecular characterization and pharmacological properties of the human P2X3 purinoceptor. Mol Brain Res 47:59–66PubMedGoogle Scholar
  98. 98.
    Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120:1483–1490PubMedGoogle Scholar
  99. 99.
    Gartland A, Buckley KA, Bowler WB, Gallagher JA (2003) Blockade of the pore-forming P2X7 receptor inhibits formation of multinucleated human osteoclasts in vitro. Calcif Tissue Int 73:361–369PubMedGoogle Scholar
  100. 100.
    Gartland A, Buckley KA, Hipskind RA, Perry MJ, Tobias JH, Buell G, Chessell I, Bowler WB, Gallagher JA (2003) Multinucleated osteoclast formation in vivo and in vitro by P2X7 receptor-deficient mice. Crit Rev Eukaryot Gene Expr 13:243–253PubMedGoogle Scholar
  101. 101.
    Gartland A, Hipskind RA, Gallagher JA, Bowler WB (2001) Expression of a P2X7 receptor by a subpopulation of human osteoblasts. J Bone Miner Res 16:846–856PubMedGoogle Scholar
  102. 102.
    Gayle S, Burnstock G (2005) Immunolocalisation of P2X and P2Y nucleotide receptors in the rat nasal mucosa. Cell Tissue Res 319:27–36PubMedGoogle Scholar
  103. 103.
    Gever JR, Padilla F, Knight GF, Dunn PM, Tran A, Mandel DA, Hegde SS, Jaime-Figueroa S, Greenhouse RJ, Lachnit WG, Burnstock G, Ford APDW (2004) In vitro and in vivo characterization of RO0437626, a novel and selective P2X1 antagonist. In: Purines 2004, p 86. 4th International symposium on nucleosides and nucleotides, Chapel Hill, NC, June 6–9, 2004Google Scholar
  104. 104.
    Gilchrist LS, Cain DM, Harding-Rose C, Kov AN, Wendelschafer-Crabb G, Kennedy WR, Simone DA (2005) Re-organization of P2X3 receptor localization on epidermal nerve fibers in a murine model of cancer pain. Brain Res 1044:197–205PubMedGoogle Scholar
  105. 105.
    Glass R, Townsend-Nicholson A, Burnstock G (2000) P2 receptors in the thymus: expression of P2X and P2Y receptors in adult rats, an immunohistochemical and in situ hybridisation study. Cell Tissue Res 300:295–306PubMedGoogle Scholar
  106. 106.
    Gonzalez FA, Ahmed AH, Lustig KD, Erb L, Weisman GA (1989) Permeabilization of transformed mouse fibroblasts by 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate and the desensitization of the process. J Cell Physiol 139:109–115PubMedGoogle Scholar
  107. 107.
    Gourine AV, Atkinson L, Deuchars J, Spyer KM (2003) Purinergic signalling in the medullary mechanisms of respiratory control in the rat: respiratory neurones express the P2X2 receptor subunit. J Physiol 552:197–211PubMedGoogle Scholar
  108. 108.
    Grahames CBA, Michel AD, Chessell IP, Humphrey PPA (1999) Pharmacological characterization of ATP- and LPS-induced IL-1β release in human monocytes. Br J Pharmacol 127:1915–1921PubMedGoogle Scholar
  109. 109.
    Greig AVH, James SE, McGrouther DA, Terenghi G, Burnstock G (2003) Purinergic receptor expression in the regenerating epidermis in a rat model of normal and delayed wound healing. Exp Dermatol 12:860–871PubMedGoogle Scholar
  110. 110.
    Greig AVH, Linge C, Healy V, Lim P, Clayton E, Rustin MHA, McGrouther DA, Burnstock G (2003) Expression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells. J Invest Dermatol 121:315–327PubMedGoogle Scholar
  111. 111.
    Groschel-Stewart U, Bardini M, Robson T, Burnstock G (1999) Localisation of P2X5 and P2X7 receptors by immunohistochemistry in rat stratified squamous epithelia. Cell Tissue Res 296:599–605PubMedGoogle Scholar
  112. 112.
    Grubb BD, Evans RJ (1999) Characterization of cultured dorsal root ganglion neuron P2X receptors. Eur J Neurosci 11:149–154PubMedGoogle Scholar
  113. 113.
    Grutter T, Le Novere N, Changeux JP (2004) Rational understanding of nicotinic receptors drug binding. Curr Top Med Chem 4:645–651PubMedGoogle Scholar
  114. 114.
    Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389:749–753PubMedGoogle Scholar
  115. 115.
    Gudipaty L, Humphreys BD, Buell G, Dubyak GR (2001) Regulation of P2X7 nucleotide receptor function in human monocytes by extracellular ions and receptor density. Am J Physiol Cell Physiol 280:C943–C953PubMedGoogle Scholar
  116. 116.
    Guo LH, Trautmann K, Schluesener HJ (2005) Expression of P2X4 receptor by lesional activated microglia during formalin-induced inflammatory pain. J Neuroimmunol 163:120–127PubMedGoogle Scholar
  117. 117.
    Haines WR, Torres GE, Voigt MM, Egan TM (1999) Properties of the novel ATP-gated ionotropic receptor composed of the P2X1 and P2X5 isoforms. Mol Pharmacol 56:720–727PubMedGoogle Scholar
  118. 118.
    Hansen MA, Balcar VJ, Barden JA, Bennett MR (1998) Localisation of P2X subtypes in heart, artery and bladder. Drug Dev Res 43:5Google Scholar
  119. 119.
    Hansen MA, Bennett MR, Barden JA (1999) Distribution of purinergic P2X receptors in the rat heart. J Auton Nerv Syst 78:1–9PubMedGoogle Scholar
  120. 120.
    Hansen MA, Dutton JL, Balcar VJ, Barden JA, Bennett MR (1999) P2X (purinergic) receptor distributions in rat blood vessels. J Auton Nerv Syst 75:147–155PubMedGoogle Scholar
  121. 121.
    He L, Chen J, Dinger B, Stensaas L, Fidone S (2006) Effect of chronic hypoxia on purinergic synaptic transmission in rat carotid body. J Appl Phys 100:157–162Google Scholar
  122. 122.
    Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, Cazenave JP, Cattaneo M, Ruggeri ZM, Evans R, Gachet C (2003) A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 198:661–667PubMedGoogle Scholar
  123. 123.
    Hibell AD, Kidd EJ, Chessell IP, Humphrey PPA, Michel AD (2000) Apparent species differences in the kinetic properties of P2X7 receptors. Br J Pharmacol 130:167–173PubMedGoogle Scholar
  124. 124.
    Hibell AD, Thompson KM, Xing M, Humphrey PPA, Michel AD (2001) Complexities of measuring antagonist potency at P2X7 receptor orthologs. J Pharmacol Exp Ther 296:947–957PubMedGoogle Scholar
  125. 125.
    Hoebertz A, Townsend-Nicholson A, Glass R, Burnstock G, Arnett TR (2000) Expression of P2 receptors in bone and cultured bone cells. Bone 27:503–510PubMedGoogle Scholar
  126. 126.
    Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 145:494–504PubMedGoogle Scholar
  127. 127.
    Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF, Lynch K (2002) Analgesic profile of intrathecal P2X3 antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99:11–19PubMedGoogle Scholar
  128. 128.
    Honore P, Mikusa J, Bianchi B, McDonald H, Cartmell J, Faltynek C, Jarvis MF (2002) TNP-ATP, a potent P2X3 receptor antagonist, blocks acetic acid-induced abdominal constriction in mice: comparison with reference analgesics. Pain 96:99–105PubMedGoogle Scholar
  129. 129.
    Horner S, Menke K, Hildebrandt C, Kassack MU, Nickel P, Ullmann H, Mahaut-Smith MP, Lambrecht G (2005) The novel suramin analog NF864 selectively blocks P2X1 receptors in human platelets with potency in the low nanomolar range. Naunyn-Schmiedebergs Arch Pharmacol 372:1–13PubMedGoogle Scholar
  130. 130.
    Housley GD, Greenwood D, Bennett T, Ryan AF (1995) Identification of a short form of the P2xR1-purinoceptor subunit produced by alternative splicing in the pituitary and cochlea. Biochem Biophys Res Commun 212:501–508PubMedGoogle Scholar
  131. 131.
    Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR (1999) Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19:8377–8388PubMedGoogle Scholar
  132. 132.
    Hoyle CHV, Chapple C, Burnstock G (1989) Isolated human bladder: evidence for an adenine dinucleotide acting on P2X-purinoceptors and for purinergic transmission. Eur J Pharmacol 174:115–118PubMedGoogle Scholar
  133. 133.
    Hugel S, Schlichter R (2000) Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci 20:2121–2130PubMedGoogle Scholar
  134. 134.
    Humphreys BD, Virginio C, Surprenant A, Rice J, Dubyak GR (1998) Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues. Mol Pharmacol 54:22–32PubMedGoogle Scholar
  135. 135.
    Ichikawa H, Fukunaga T, Jin HW, Fujita M, Takano-Yamamoto T, Sugimoto T (2004) VR1-, VRL-1- and P2X3 receptor-immunoreactive innervation of the rat temporomandibular joint. Brain Res 1008:131–136PubMedGoogle Scholar
  136. 136.
    Inoue K, Denda M, Tozaki H, Fujishita K, Koizumi S, Inoue K (2005) Characterization of multiple P2X receptors in cultured normal human epidermal keratinocytes. J Invest Dermatol 124:756–763PubMedGoogle Scholar
  137. 137.
    Inoue K, Tsuda M, Koizumi S (2003) ATP induced three types of pain behaviors, including allodynia. Drug Dev Res 59:56–63Google Scholar
  138. 138.
    Inoue K, Tsuda M, Koizumi S (2004) ATP- and adenosine-mediated signaling in the central nervous system: chronic pain and microglia: involvement of the ATP receptor P2X4. J Pharmacol Sci 94:112–114PubMedGoogle Scholar
  139. 139.
    Inoue R, Brading AF (1990) The properties of the ATP-induced depolarization and current in single cells isolated from the guinea-pig urinary bladder. Br J Pharmacol 100:619–625PubMedGoogle Scholar
  140. 140.
    Inoue R, Brading AF (1991) Human, pig and guinea-pig bladder smooth muscle cell generate similar inward currents in response to purinoceptor activation. Br J Pharmacol 103:1840–1841PubMedGoogle Scholar
  141. 141.
    Inscho EW, Cook AK, Imig JD, Vial C, Evans RJ (2003) Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112:1895–1905PubMedGoogle Scholar
  142. 142.
    Ishikawa T, Miyagi M, Ohtori S, Aoki Y, Ozawa T, Doya H, Saito T, Moriya H, Takahashi K (2005) Characteristics of sensory DRG neurons innervating the lumbar facet joints in rats. Eur Spine J 14:559–564PubMedGoogle Scholar
  143. 143.
    Jacobson KA, Kim YC, Wildman SS, Mohanram A, Harden TK, Boyer JL, King BF, Burnstock G (1998) A pyridoxine cyclic phosphate and its 6-azoaryl derivative selectively potentiate and antagonize activation of P2X1 receptors. J Med Chem 41:2201–2206PubMedGoogle Scholar
  144. 144.
    Jaime-Figueroa S, Greenhouse R, Padilla F, Dillon MP, Gever JR, Ford APDW (2005) Discovery and synthesis of a novel and selective drug-like P2X1 antagonist. Bioorg Med Chem Lett 15:3292–3295PubMedGoogle Scholar
  145. 145.
    Jarlebark LE, Housley GD, Raybould NP, Vlajkovic S, Thorne PR (2002) ATP-gated ion channels assembled from P2X2 receptor subunits in the mouse cochlea. Neuroreport 13:1979–1984PubMedGoogle Scholar
  146. 146.
    Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 99:17179–17184PubMedGoogle Scholar
  147. 147.
    Jarvis MF, Donnelly-Roberts DD, Honore P, Harris R, Namovic MM, Hernandez G, Zhong C, Zhu C, Gauvin DM, Chandran P, Hsieh G, Perez-Medrano A, Carroll W, Sullivan JP, Faltynek CR (2005) A-740003, a novel and selective P2X7 receptor antagonist produces dose-dependent analgesia in models of neuropathic pain. Abstract viewer/itinerary planner. Society for Neuroscience 2005, Washington, District of Columbia. Online: Program No. 514.5Google Scholar
  148. 148.
    Jarvis MF, Wismer CT, Schweitzer E, Yu H, Van Biesen T, Lynch KJ, Burgard EC, Kowaluk EA (2001) Modulation of BzATP and formalin induced nociception: attenuation by the P2X receptor antagonist, TNP-ATP and enhancement by the P2X3 allosteric modulator, cibacron blue. Br J Pharmacol 132:259–269Google Scholar
  149. 149.
    Jarvis MJ (2003) Contributions of P2X3 homomeric and heteromeric channels to acute and chronic pain. Expert Opin Ther Targets 7:513–522PubMedGoogle Scholar
  150. 150.
    Jensik PJ, Holbird D, Collard MW, Cox TC (2001) Cloning and characterization of a functional P2X receptor from larval bullfrog skin. Am J Physiol Cell Physiol 281:C954–C962PubMedGoogle Scholar
  151. 151.
    Jiang LH, Kim M, Spelta V, Bo X, Surprenant A, North RA (2003) Subunit arrangement in P2X receptors. J Neurosci 23:8903–8910PubMedGoogle Scholar
  152. 152.
    Jiang LH, MacKenzie AB, North RA, Surprenant A (2000) Brilliant blue G selectively blocks ATP-gated rat P2X7 receptors. Mol Pharmacol 58:82–88PubMedGoogle Scholar
  153. 153.
    Jiang LH, Rassendren F, MacKenzie A, Zhang YH, Surprenant A, North RA (2005) N-methyl-d-glucamine and propidium dyes utilize different permeation pathways at rat P2X7 receptors. Am J Physiol Cell Physiol 289:C1295–C1302PubMedGoogle Scholar
  154. 154.
    Jiang LH, Rassendren F, Surprenant A, North RA (2000) Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor. J Biol Chem 275:34190–34196PubMedGoogle Scholar
  155. 155.
    Jiang T, Yeung D, Lien CF, Gorecki DC (2005) Localized expression of specific P2X receptors in dystrophin-deficient DMD and mdx muscle. Neuromuscul Disord 15:225–236PubMedGoogle Scholar
  156. 156.
    Jin Y-H, Bailey TW, Li B, Schild JH, Andresen MC (2004) Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci 24:4709–4717PubMedGoogle Scholar
  157. 157.
    Jones CA, Chessell IP, Simon J, Barnard EA, Miller KJ, Michel AD, Humphrey PPA (2000) Functional characterization of the P2X4 receptor orthologues. Br J Pharmacol 129:388–394PubMedGoogle Scholar
  158. 158.
    Jones CA, Vial C, Sellers LA, Humphrey PPA, Evans RJ, Chessell IP (2004) Functional regulation of P2X6 receptors by N-linked glycosylation: identification of a novel αβ-methylene ATP-sensitive phenotype. Mol Pharmacol 65:979–985PubMedGoogle Scholar
  159. 159.
    Jorgensen NR, Henriksen Z, Sorensen OH, Eriksen EF, Civitelli R, Steinberg TH (2002) Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors. J Biol Chem 277:7574–7580PubMedGoogle Scholar
  160. 160.
    Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, Luo L, Ryan AF (1999) Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 407:11–32PubMedGoogle Scholar
  161. 161.
    Kanjhan R, Housley GD, Thorne PR, Christie DL, Palmer DJ, Luo L, Ryan AF (1996) Localization of ATP-gated ion channels in cerebellum using P2x2R subunit-specific antisera. Neuroreport 7:2665–2669PubMedGoogle Scholar
  162. 162.
    Kasakov L, Burnstock G (1983) The use of the slowly degradable analog, α,β-methylene ATP, to produce desensitisation of the P2-purinoceptor: effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. Eur J Pharmacol 86:291–294Google Scholar
  163. 163.
    Ke HZ, Qi H, Weidema AF, Zhang Q, Panupinthu N, Crawford DT, Grasser WA, Paralkar VM, Li M, Audoly LP, Gabel CA, Jee WSS, Dixon SJ, Sims SM, Thompson DD (2003) Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 17:1356–1367PubMedGoogle Scholar
  164. 164.
    Kerr DIB, Krantis A (1979) A new class of ATP antagonist. Proc Aust Physiol Pharm Soc 10:156PGoogle Scholar
  165. 165.
    Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, Voigt M, Humphrey PPA (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118PubMedGoogle Scholar
  166. 166.
    Khakh BS, Bao XR, Labarca C, Lester HA (1999) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nature Neurosci 2:322–330PubMedGoogle Scholar
  167. 167.
    Khakh BS, Gittermann D, Cockayne DA, Jones A (2003) ATP modulation of excitatory synapses onto interneurons. J Neurosci 23:7426–7437PubMedGoogle Scholar
  168. 168.
    Khakh BS, Proctor WR, Dunwiddie TV, Labarca C, Lester HA (1999) Allosteric control of gating and kinetics at P2X4 receptor channels. J Neurosci 19:7289–7299PubMedGoogle Scholar
  169. 169.
    Kidd EJ, Grahames CBA, Simon J, Michel AD, Barnard EA, Humphrey PPA (1995) Localization of P2X purinoceptor transcripts in the rat nervous system. Mol Pharmacol 48:569–573PubMedGoogle Scholar
  170. 170.
    Kidd EJ, Miller KJ, Sansum AJ, Humphrey PPA (1998) Evidence for P2X3 receptors in the developing rat brain. Neuroscience 87:533–539PubMedGoogle Scholar
  171. 171.
    King BF, Liu M, Pintor J, Gualix J, Miras-Portugal MT, Burnstock G (1999) Diinosine pentaphosphate (IP5I) is a potent antagonist at recombinant rat P2X1 receptors. Br J Pharmacol 128:981–988PubMedGoogle Scholar
  172. 172.
    King BF, Townsend-Nicholson A, Wildman SS, Thomas T, Spyer KM, Burnstock G (2000) Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes. J Neurosci 20:4871–4877PubMedGoogle Scholar
  173. 173.
    King BF, Wildman SS, Ziganshina LE, Pintor J, Burnstock G (1997) Effects of extracellular pH on agonism and antagonism at a recombinant P2X2 receptor. Br J Pharmacol 121:1445–1453PubMedGoogle Scholar
  174. 174.
    King BF, Ziganshina LE, Pintor J, Burnstock G (1996) Full sensitivity of P2X2 purinoceptor to ATP revealed by changing extracellular pH. Br J Pharmacol 117:1371–1373PubMedGoogle Scholar
  175. 175.
    King M, Housley GD, Raybould NP, Greenwood D, Salih SG (1998) Expression of ATP-gated ion channels by Reissner’s membrane epithelial cells. Neuroreport 9:2467–2474PubMedGoogle Scholar
  176. 176.
    Kirkup AJ, Booth CE, Chessell IP, Humphrey PPA, Grundy D (1999) Excitatory effect of P2X receptor activation on mesenteric afferent nerves in the anaesthetised rat. J Physiol 520:551–563PubMedGoogle Scholar
  177. 177.
    Knight GE, Bodin P, De Groat WC, Burnstock G (2002) ATP is released from guinea pig ureter epithelium on distension. Am J Physiol Renal Physiol 282:F281–F288PubMedGoogle Scholar
  178. 178.
    Knight GE, Burnstock G (2004) The effect of pregnancy and the oestrus cycle on purinergic and cholinergic responses of the rat urinary bladder. Neuropharmacology 46:1049–1056PubMedGoogle Scholar
  179. 179.
    Koshimizu T, Tomic M, Koshimizu M, Stojilkovic SS (1998) Identification of amino acid residues contributing to desensitization of the P2X2 receptor channel. J Biol Chem 273:12853–12857PubMedGoogle Scholar
  180. 180.
    Koshimizu T, Tomic M, Van Goor F, Stojilkovic SS (1998) Functional role of alternative splicing in pituitary P2X2 receptor-channel activation and desensitization. Mol Endocrinol 12:901–913PubMedGoogle Scholar
  181. 181.
    Krause RM, Buisson B, Bertrand S, Corringer PJ, Galzi JL, Changeux JP, Bertrand D (1998) Ivermectin: a positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:283–294PubMedGoogle Scholar
  182. 182.
    Krusek J, Zemkova H (1994) Effect of ivermectin on γ-aminobutyric acid-induced chloride currents in mouse hippocampal embryonic neurones. Eur J Pharmacol 259:121–128PubMedGoogle Scholar
  183. 183.
    Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445PubMedGoogle Scholar
  184. 184.
    Lambrecht G, Friebe T, Grimm U, Windscheif U, Bungardt E, Hildebrandt C, Baumert HG, Spatz-Kumbel G, Mutschler E (1992) PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol 217:217–219PubMedGoogle Scholar
  185. 185.
    Lambrecht G, Rettinger J, Baumert HG, Czeche S, Damer S, Ganso M, Hildebrandt C, Niebel B, Spatz-Kumbel G, Schmalzing G, Mutschler E (2000) The novel pyridoxal-5′-phosphate derivative PPNDS potently antagonizes activation of P2X1 receptors. Eur J Pharmacol 387:R19–R21PubMedGoogle Scholar
  186. 186.
    Le Feuvre R, Brough D, Rothwell N (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 447:261–269PubMedGoogle Scholar
  187. 187.
    Le Feuvre RA, Brough D, Touzani O, Rothwell NJ (2003) Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J Cereb Blood Flow Metab 23:381–384PubMedGoogle Scholar
  188. 188.
    Le KT, Babinski K, Seguela P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18:7152–7159PubMedGoogle Scholar
  189. 189.
    Le KT, Boue-Grabot E, Archambault V, Seguela P (1999) Functional and biochemical evidence for heteromeric ATP-gated channels composed of P2X1 and P2X5 subunits. J Biol Chem 274:15415–15419PubMedGoogle Scholar
  190. 190.
    Le KT, Paquet M, Nouel D, Babinski K, Seguela P (1997) Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system. FEBS Lett 418:195–199PubMedGoogle Scholar
  191. 191.
    Lee HY, Bradini M, Burnstock G (2000) Distribution of P2X receptors in the urinary bladder and the ureter of the rat. J Urol 163:2002–2007PubMedGoogle Scholar
  192. 192.
    Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435PubMedGoogle Scholar
  193. 193.
    Lewis CJ, Evans RJ (2001) P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J Vasc Res 38:332–340PubMedGoogle Scholar
  194. 194.
    Li C, Peoples RW, Li Z, Weight FF (1993) Zn2+ potentiates excitatory action of ATP on mammalian neurons. Proc Natl Acad Sci USA 90:8264–8267PubMedGoogle Scholar
  195. 195.
    Li C, Peoples RW, Weight FF (1996) Acid pH augments excitatory action of ATP on a dissociated mammalian sensory neuron. Neuroreport 7:2151–2154PubMedCrossRefGoogle Scholar
  196. 196.
    Li C, Peoples RW, Weight FF (1996) Proton potentiation of ATP-gated ion channel responses to ATP and Zn2+ in rat nodose ganglion neurons. J Neurophysiol 76:3048–3058PubMedGoogle Scholar
  197. 197.
    Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280:42952–42959PubMedGoogle Scholar
  198. 198.
    Liang L, Schwiebert EM (2005) Large pore formation uniquely associated with P2X7 purinergic receptor channels. Focus on “Are second messengers crucial for opening the pore associated with P2X7 receptor?” Am J Physiol Cell Physiol 288:C240–C242PubMedGoogle Scholar
  199. 199.
    Liu M, King BF, Dunn PM, Rong W, Townsend-Nicholson A, Burnstock G (2001) Coexpression of P2X3 and P2X2 receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons. J Pharmacol Exp Ther 296:1043–1050PubMedGoogle Scholar
  200. 200.
    Lynch KJ, Touma E, Niforatos W, Kage KL, Burgard EC, Van Biesen T, Kowaluk EA, Jarvis MF (1999) Molecular and functional characterization of human P2X2 receptors. Mol Pharmacol 56:1171–1181PubMedGoogle Scholar
  201. 201.
    Ma B, Ruan HZ, Burnstock G, Dunn PM (2005) Differential expression of P2X receptors on neurons from different parasympathetic ganglia. Neuropharmacology 48:766–777PubMedGoogle Scholar
  202. 202.
    Ma B, Ruan HZ, Cockayne DA, Ford APDW, Burnstock G, Dunn PM (2004) Identification of P2X receptors in cultured mouse and rat parasympathetic otic ganglion neurones including P2X knockout studies. Neuropharmacology 46:1039–1048PubMedGoogle Scholar
  203. 203.
    MacKenzie AB, Mahaut-Smith MP, Sage SO (1996) Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J Biol Chem 271:2879–2881PubMedGoogle Scholar
  204. 204.
    Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ (2000) ADP is not an agonist at P2X1 receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 131:108–114PubMedGoogle Scholar
  205. 205.
    Mason HS, Bourke S, Kemp PJ (2004) Selective modulation of ligand-gated P2X purinoceptor channels by acute hypoxia is mediated by reactive oxygen species. Mol Pharmacol 66:1525–1535PubMedGoogle Scholar
  206. 206.
    McCoy DE, Taylor AL, Kudlow BA, Karlson K, Slattery MJ, Schwiebert LM, Schwiebert EM, Stanton BA (1999) Nucleotides regulate NaCl transport in mIMCD-K2 cells via P2X and P2Y purinergic receptors. Am J Physiol Renal Physiol 277:F552–F559Google Scholar
  207. 207.
    McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR, Jarvis MF (2003) Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol 140:1381–1388PubMedGoogle Scholar
  208. 208.
    Mehta VB, Hart J, Wewers MD (2001) ATP-stimulated release of interleukin (IL)-1β and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem 276:3820–3826PubMedGoogle Scholar
  209. 209.
    Merriman GH, Ma L, Shum P, McGarry D, Volz F, Sabol JS, Gross A, Zhao Z, Rampe D, Wang L, Wirtz-Brugger F, Harris BA, Macdonald D (2005) Synthesis and SAR of novel 4,5-diarylimidazolines as potent P2X7 receptor antagonists. Bioorg Med Chem Lett 15:435–438PubMedGoogle Scholar
  210. 210.
    Meyer MP, Groschel-Stewart U, Robson T, Burnstock G (1999) Expression of two ATP-gated ion channels, P2X5 and P2X6, in developing chick skeletal muscle. Dev Dyn 216:442–449PubMedGoogle Scholar
  211. 211.
    Michel AD, Chessell IP, Humphrey PPA (1999) Ionic effects on human recombinant P2X7 receptor function. Naunyn-Schmiedebergs Arch Pharmacol 359:102–109PubMedGoogle Scholar
  212. 212.
    Michel AD, Grahames CBA, Humphrey PPA (1996) Functional characterisation of P2 purinoceptors in PC12 cells by measurement of radiolabelled calcium influx. Naunyn-Schmiedebergs Arch Pharmacol 354:562–571PubMedGoogle Scholar
  213. 213.
    Michel AD, Kaur R, Chessell IP, Humphrey PPA (2000) Antagonist effects on human P2X7 receptor-mediated cellular accumulation of YO-PRO-1. Br J Pharmacol 130:513–520PubMedGoogle Scholar
  214. 214.
    Miller KJ, Michel AD, Chessell IP, Humphrey PPA (1998) Cibacron blue allosterically modulates the rat P2X4 receptor. Neuropharmacology 37:1579–1586PubMedGoogle Scholar
  215. 215.
    Mio K, Kubo Y, Ogura T, Yamamoto T, Sato C (2005) Visualization of the trimeric P2X2 receptor with a crown-capped extracellular domain. Biochem Biophys Res Commun 337:998–1005PubMedGoogle Scholar
  216. 216.
    Mok MHS, Knight GE, Andrews PLR, Hoyle CHV, Burnstock G (2000) The effects of cyclophosphamide on neurotransmission in the urinary bladder of Suncus murinus, the house musk shrew. J Auton Nerv Syst 80:130–136PubMedGoogle Scholar
  217. 217.
    Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, Brown JE, Conley EC, Buell G, Pritchard CA, Evans RJ (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403:86–89PubMedGoogle Scholar
  218. 218.
    Murgia M, Hanau S, Pizzo P, Rippa M, Di Virgilio F (1993) Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem 268:8199–8203PubMedGoogle Scholar
  219. 219.
    Naemsch LN, Weidema AF, Sims SM, Underhill TM, Dixon SJ (1999) P2X4 purinoceptors mediate an ATP-activated, non-selective cation current in rabbit osteoclasts. J Cell Sci 112:4425–4435PubMedGoogle Scholar
  220. 220.
    Naemsch LN, Dixon SJ, Sims SM (2001) Activity-dependent development of P2X7 current and Ca2+ entry in rabbit osteoclasts. J Biol Chem 276:39107–39114PubMedGoogle Scholar
  221. 221.
    Nagaya N, Tittle RK, Saar N, Dellal SS, Hume RI (2005) An intersubunit zinc binding site in rat P2X2 receptors. J Biol Chem 280:25982–25993PubMedGoogle Scholar
  222. 222.
    Nakatsuka T, Gu JG (2001) ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci 21:6522–6531PubMedGoogle Scholar
  223. 223.
    Nakatsuka T, Tsuzuki K, Ling JX, Sonobe H, Gu JG (2003) Distinct roles of P2X receptors in modulating glutamate release at different primary sensory synapses in rat spinal cord. J Neurophysiol 89:3243–3252PubMedGoogle Scholar
  224. 224.
    Nakazawa K, Ohno Y (1997) Effects of neuroamines and divalent cations on cloned and mutated ATP-gated channels. Eur J Pharmacol 325:101–108PubMedGoogle Scholar
  225. 225.
    Neelands TR, Burgard EC, Uchic ME, McDonald HA, Niforatos W, Faltynek CR, Lynch KJ, Jarvis MF (2003) 2′, 3′-O-(2,4,6,trinitrophenyl)-ATP and A-317491 are competitive antagonists at a slowly desensitizing chimeric human P2X3 receptor. Br J Pharmacol 140:202–210PubMedGoogle Scholar
  226. 226.
    Newbolt A, Stoop R, Virginio C, Surprenant A, North RA, Buell G, Rassendren F (1998) Membrane topology of an ATP-gated ion channel (P2X receptor). J Biol Chem 273:15177–15182PubMedGoogle Scholar
  227. 227.
    Nicke A, Bäumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17:3016–3028PubMedGoogle Scholar
  228. 228.
    Nicke A, Kerschensteiner D, Soto F (2005) Biochemical and functional evidence for heteromeric assembly of P2X1 and P2X4 subunits. J Neurochem 92:925–933PubMedGoogle Scholar
  229. 229.
    Norenberg W, Illes P (2000) Neuronal P2X receptors: localisation and functional properties. Naunyn-Schmiedebergs Arch Pharmacol 362:324–339PubMedGoogle Scholar
  230. 230.
    Nori S, Fumagalli L, Bo X, Bogdanov Y, Burnstock G (1998) Coexpression of mRNAs for P2X1, P2X2 and P2X4 receptors in rat vascular smooth muscle: an in situ hybridization and RT-PCR study. J Vasc Res 35:179–185PubMedGoogle Scholar
  231. 231.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  232. 232.
    O’Connor SE, Wood BE, Leff P (1990) Characterization of P2X-receptors in rabbit isolated ear artery. Br J Pharmacol 101:640–644PubMedGoogle Scholar
  233. 233.
    Ohta T, Kubota A, Murakami M, Otsuguro K, Ito S (2005) P2X2 receptors are essential for [Ca2+]i increases in response to ATP in cultured rat myenteric neurons. Am J Physiol Gastrointest Liver Physiol 289:G935–G948PubMedGoogle Scholar
  234. 234.
    Oury C, Kuijpers MJE, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys I, Feijge MAH, De Vos R, Vermylen J, Heemskerk JWM, Hoylaerts MF (2003) Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101:3969–3976PubMedGoogle Scholar
  235. 235.
    Palea S, Pietra C, Trist DG, Artibani W, Calpista A, Corsi M (1995) Evidence for the presence of both pre- and postjunctional P2-purinoceptor subtypes in human isolated urinary bladder. Br J Pharmacol 114:35–40PubMedGoogle Scholar
  236. 236.
    Pandita RK, Andersson K-E (2002) Intravesical adenosine triphosphate stimulates the micturition reflex in awake, freely moving rats. J Urol 168:1230–1234PubMedGoogle Scholar
  237. 237.
    Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10:3898–3902PubMedGoogle Scholar
  238. 238.
    Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278:13309–13317PubMedGoogle Scholar
  239. 239.
    Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA (2000) ATP acts as an agonist to promote stimulus-induced secretion of IL-1β and IL-18 in human blood. J Immunol 165:4615–4623PubMedGoogle Scholar
  240. 240.
    Pintor J, King BF, Miras-Portugal MT, Burnstock G (1996) Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors. Br J Pharmacol 119:1006–1012PubMedGoogle Scholar
  241. 241.
    Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB (2002) The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Auton Neurosci 101:39–47PubMedGoogle Scholar
  242. 242.
    Prasad M, Fearon IM, Zhang M, Laing M, Vollmer C, Nurse CA (2001) Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: role in chemosensory signalling. J Physiol 537:667–677PubMedGoogle Scholar
  243. 243.
    Pratt EB, Brink TS, Bergson P, Voigt MM, Cook SP (2005) Use-dependent inhibition of P2X3 receptors by nanomolar agonist. J Neurosci 25:7359–7365PubMedGoogle Scholar
  244. 244.
    Priel A, Silberberg SD (2004) Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol 123:281–293PubMedGoogle Scholar
  245. 245.
    Radford KM, Virginio C, Surprenant A, North RA, Kawashima E (1997) Baculovirus expression provides direct evidence for heteromeric assembly of P2X2 and P2X3 receptors. J Neurosci 17:6529–6533PubMedGoogle Scholar
  246. 246.
    Rae MG, Rowan EG, Kennedy C (1998) Pharmacological properties of P2X3-receptors present in neurones of the rat dorsal root ganglia. Br J Pharmacol 124:176–180PubMedGoogle Scholar
  247. 247.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  248. 248.
    Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of β-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147:56–61PubMedGoogle Scholar
  249. 249.
    Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 272:5482–5486PubMedGoogle Scholar
  250. 250.
    Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DA, Ford APDW, Galligan JJ (2003) P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 552:809–821PubMedGoogle Scholar
  251. 251.
    Rettinger J, Braun K, Hochmann H, Kassack MU, Ullmann H, Nickel P, Schmalzing G, Lambrecht G (2005) Profiling at recombinant homomeric and heteromeric rat P2X receptors identifies the suramin analog NF449 as a highly potent P2X1 receptor antagonist. Neuropharmacology 48:461–468PubMedGoogle Scholar
  252. 252.
    Rettinger J, Schmalzing G (2004) Desensitization masks nanomolar potency of ATP for the P2X1 receptor. J Biol Chem 279:6426–6433PubMedGoogle Scholar
  253. 253.
    Rettinger J, Schmalzing G, Damer S, Muller G, Nickel P, Lambrecht G (2000) The suramin analog NF279 is a novel and potent antagonist selective for the P2X1 receptor. Neuropharmacology 39:2044–2053PubMedGoogle Scholar
  254. 254.
    Roberts JA, Evans RJ (2004) ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. J Biol Chem 279:9043–9055PubMedGoogle Scholar
  255. 255.
    Robertson SJ, Rae MG, Rowan EG, Kennedy C (1996) Characterization of a P2X-purinoceptor in cultured neurones of the rat dorsal root ganglia. Br J Pharmacol 118:951–956PubMedGoogle Scholar
  256. 256.
    Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP. Thromb Haemost 85:303–308PubMedGoogle Scholar
  257. 257.
    Rong W, Burnstock G (2004) Activation of ureter nociceptors by exogenous and endogenous ATP in guinea pig. Neuropharmacology 47:1093–1101PubMedCrossRefGoogle Scholar
  258. 258.
    Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford APDW, Spyer KM, Burnstock G (2003) Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23:11315–11321PubMedGoogle Scholar
  259. 259.
    Rong W, Spyer KM, Burnstock G (2002) Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J Physiol 541:591–600PubMedGoogle Scholar
  260. 260.
    Rubio ME, Soto F (2001) Distinct localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21:641–653PubMedGoogle Scholar
  261. 261.
    Ruppelt A, Ma W, Borchardt K, Silberberg SD, Soto F (2001) Genomic structure, developmental distribution and functional properties of the chicken P2X5 receptor. J Neurochem 77:1256–1265PubMedGoogle Scholar
  262. 262.
    Ryten M, Dunn PM, Neary JT, Burnstock G (2002) ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells. J Cell Biol 158:345–355PubMedGoogle Scholar
  263. 263.
    Ryten M, Hoebertz A, Burnstock G (2001) Sequential expression of three receptor subtypes for extracellular ATP in developing rat skeletal muscle. Dev Dyn 221:331–341PubMedGoogle Scholar
  264. 264.
    Satchell DG, Maguire MH (1975) Inhibitory effects of adenine nucleotide analogs on the isolated guinea-pig taenia coli. J Pharmacol Exp Ther 195:540–548PubMedGoogle Scholar
  265. 265.
    Scheibler P, Pesic M, Franke H, Reinhardt R, Wirkner K, Illes P, Norenberg W (2004) P2X2 and P2Y1 immunofluorescence in rat neostriatal medium-spiny projection neurones and cholinergic interneurones is not linked to respective purinergic receptor function. Br J Pharmacol 143:119–131PubMedGoogle Scholar
  266. 266.
    Schwab JM, Guo L, Schluesener HJ (2005) Spinal cord injury induces early and persistent lesional P2X4 receptor expression. J Neuroimmunol 163:185–189PubMedGoogle Scholar
  267. 267.
    Seguela P, Haghighi A, Soghomonian JJ, Cooper E (1996) A novel neuronal P2X ATP receptor ion channel with widespread distribution in the brain. J Neurosci 16:448–455PubMedGoogle Scholar
  268. 268.
    Sigel E (2002) Mapping of the benzodiazepine recognition site on GABAA receptors. Curr Top Med Chem 2:833–839PubMedGoogle Scholar
  269. 269.
    Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314PubMedGoogle Scholar
  270. 270.
    Simon J, Kidd EJ, Smith FM, Chessell IP, Murrell-Lagnado R, Humphrey PPA, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52:237–248PubMedGoogle Scholar
  271. 271.
    Skaper SD, Facci L, Culbert A, Chessell I, Davis JB, Richardson JC (2005) P2X7 receptors on microglial cells mediate toxicity to cortical neurons in vitro. Abstract viewer/itinerary planner. Society for Neuroscience 2005, Washington, District of Columbia.Online:Program No. 937.7Google Scholar
  272. 272.
    Sluyter R, Barden JA, Wiley JS (2001) Detection of P2X purinergic receptors on human B lymphocytes. Cell Tissue Res 304:231–236PubMedGoogle Scholar
  273. 273.
    Smith FM, Humphrey PPA, Murrell-Lagnado RD (1999) Identification of amino acids within the P2X2 receptor C-terminus that regulate desensitization. J Physiol 520:91–99PubMedGoogle Scholar
  274. 274.
    Solini A, Chiozzi P, Morelli A, Fellin R, Virgilio FD (1999) Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL-6 release. J Cell Sci 112:297–305PubMedGoogle Scholar
  275. 275.
    Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276:125–132PubMedGoogle Scholar
  276. 276.
    Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci USA 93:3684–3688PubMedGoogle Scholar
  277. 277.
    Soto F, Lambrecht G, Nickel P, Stuehmer W, Busch AE (1999) Antagonistic properties of the suramin analog NF023 at heterologously expressed P2X receptors. Neuropharmacology 38:141–149PubMedGoogle Scholar
  278. 278.
    Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R, Nebenius-Oosthuizen D, Smith AJH, Kidd EJ, Wood JN (2000) Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407:1015–1017PubMedGoogle Scholar
  279. 279.
    Spehr J, Spehr M, Hatt H, Wetzel CH (2004) Subunit-specific P2X-receptor expression defines chemosensory properties of trigeminal neurons. Eur J Neurosci 19:2497–2510PubMedGoogle Scholar
  280. 280.
    Spelta V, Jiang LH, Surprenant A, North RA (2002) Kinetics of antagonist actions at rat P2X2/3 heteromeric receptors. Br J Pharmacol 135:1524–1530PubMedGoogle Scholar
  281. 281.
    Stoop R, Surprenant A, North RA (1997) Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J Neurophysiol 78:1837–1840PubMedGoogle Scholar
  282. 282.
    Studeny S, Torabi A, Vizzard MA (2005) P2X2 and P2X3 receptor expression in postnatal and adult rat urinary bladder and lumbosacral spinal cord. Am J Physiol Regul Integr Comp Physiol 289:R1155–R1168PubMedGoogle Scholar
  283. 283.
    Sugiyama T, Kawamura H, Yamanishi S, Kobayashi M, Katsumura K, Puro DG (2005) Regulation of P2X7-induced pore formation and cell death in pericyte-containing retinal microvessels. Am J Physiol Cell Physiol 288:C568–C576PubMedGoogle Scholar
  284. 284.
    Sun Y, Chai TC (2002) Effects of dimethyl sulphoxide and heparin on stretch-activated ATP release by bladder urothelial cells from patients with interstitial cystitis. BJU Int 90:381–385PubMedGoogle Scholar
  285. 285.
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738PubMedGoogle Scholar
  286. 286.
    Surprenant A, Schneider DA, Wilson HL, Galligan JJ, North RA (2000) Functional properties of heteromeric P2X1/5 receptors expressed in HEK cells and excitatory junction potentials in guinea-pig submucosal arterioles. J Auton Nerv Syst 81:249–263PubMedGoogle Scholar
  287. 287.
    Tenneti L, Gibbons SJ, Talamo BR (1998) Expression and trans-synaptic regulation of P2X4 and P2Z receptors for extracellular ATP in parotid acinar cells. Effects of parasympathetic denervation. J Biol Chem 273:26799–26808PubMedGoogle Scholar
  288. 288.
    Theobald RJ Jr (1996) The effect of NG-monomethyl-l-arginine on bladder function. Eur J Pharmacol 311:73–78PubMedGoogle Scholar
  289. 289.
    Thomas S, Virginio C, North RA, Surprenant A (1998) The antagonist trinitrophenyl-ATP reveals co-existence of distinct P2X receptor channels in rat nodose neurones. J Physiol 509:411–417PubMedGoogle Scholar
  290. 290.
    Torres GE, Egan TM, Voigt MM (1998) Topological analysis of the ATP-gated ionotropic [correction of ionotrophic] P2X2 receptor subunit. FEBS Lett 425:19–23PubMedGoogle Scholar
  291. 291.
    Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274:6653–6659PubMedGoogle Scholar
  292. 292.
    Torres GE, Haines WR, Egan TM, Voigt MM (1998) Co-expression of P2X1 and P2X5 receptor subunits reveals a novel ATP- gated ion channel. Mol Pharmacol 54:989–993PubMedGoogle Scholar
  293. 293.
    Townsend-Nicholson A, King BF, Wildman SS, Burnstock G (1999) Molecular cloning, functional characterization and possible cooperativity between the murine P2X4 and P2X4a receptors. Mol Brain Res 64:246–254PubMedGoogle Scholar
  294. 294.
    Trezise DJ, Michel AD, Grahames CBA, Khakh BS, Surprenant A, Humphrey PPA (1995) The selective P2X purinoceptor agonist, β,γ-methylene-l-adenosine 5′-triphosphate, discriminates between smooth muscle and neuronal P2X purinoceptors. Naunyn-Schmiedebergs Arch Pharmacol 351:603–609PubMedGoogle Scholar
  295. 295.
    Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783PubMedGoogle Scholar
  296. 296.
    Tsuda M, Ueno S, Inoue K (1999) Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br J Pharmacol 128:1497–1504PubMedGoogle Scholar
  297. 297.
    Tsuda M, Ueno S, Inoue K (1999) In vivo pathway of thermal hyperalgesia by intrathecal administration of α,β-methylene ATP in mouse spinal cord: Involvement of the glutamate-NMDA receptor system. Br J Pharmacol 127:449–456PubMedGoogle Scholar
  298. 298.
    Ueno S, Moriyama T, Honda K, Kamiya H, Sakurada T, Katsuragi T (2003) Involvement of P2X2 and P2X3 receptors in neuropathic pain in a mouse model of chronic constriction injury. Drug Dev Res 59:104–111Google Scholar
  299. 299.
    Urbanek E, Nickel P, Schlicker E (1990) Antagonistic properties of four suramin-related compounds at vascular purine P2X receptors in the pithed rat. Eur J Pharmacol 175:207–210PubMedGoogle Scholar
  300. 300.
    Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371:516–519PubMedGoogle Scholar
  301. 301.
    Valera S, Talabot F, Evans RJ, Gos A, Antonarakis SE, Morris MA, Buell GN (1995) Characterization and chromosomal localization of a human P2X receptor from the urinary bladder. Recept Channels 3:283–289PubMedGoogle Scholar
  302. 302.
    Van Nassauw L, Brouns I, Adriaensen D, Burnstock G, Timmermans JP (2002) Neurochemical identification of enteric neurons expressing P2X3 receptors in the guinea-pig ileum. Histochem Cell Biol 118:193–203PubMedGoogle Scholar
  303. 303.
    Vial C, Evans RJ (2000) P2X receptor expression in mouse urinary bladder and the requirement of P2X1 receptors for functional P2X receptor responses in the mouse urinary bladder smooth muscle. Br J Pharmacol 131:1489–1495PubMedGoogle Scholar
  304. 304.
    Vial C, Evans RJ (2002) P2X1 receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries. Mol Pharmacol 62:1438–1445PubMedGoogle Scholar
  305. 305.
    Vial C, Roberts JA, Evans RJ (2004) Molecular properties of ATP-gated P2X receptor ion channels. Trends Pharmacol Sci 25:487–493PubMedGoogle Scholar
  306. 306.
    Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36:1285–1294PubMedGoogle Scholar
  307. 307.
    Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A (1999) Pore dilation of neuronal P2X receptor channels. Nature Neurosci 2:315–321PubMedGoogle Scholar
  308. 308.
    Virginio C, North RA, Surprenant A (1998) Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurones. J Physiol 510:27–35PubMedGoogle Scholar
  309. 309.
    Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53:969–973PubMedGoogle Scholar
  310. 310.
    Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford APDW, Burnstock G (2001) P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 21:5670–5677PubMedGoogle Scholar
  311. 311.
    von Kügelgen I, Krumme B, Schaible U, Schollmeyer PJ, Rump LC (1995) Vasoconstrictor responses to the P2x-purinoceptor agonist β,γ-methylene-l-ATP in human cutaneous and renal blood vessels. Br J Pharmacol 116:1932–1936Google Scholar
  312. 312.
    Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci USA 93:8063–8067PubMedGoogle Scholar
  313. 313.
    Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36:1229–1242PubMedGoogle Scholar
  314. 314.
    Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, Surprenant A, North RA, Elde R (1998) P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci 10:3470–3478PubMedGoogle Scholar
  315. 315.
    Wang CZ, Namba N, Gonoi T, Inagaki N, Seino S (1996) Cloning and pharmacological characterization of a fourth P2X receptor subtype widely expressed in brain and peripheral tissues including various endocrine tissues. Biochem Biophys Res Commun 220:196–202PubMedGoogle Scholar
  316. 316.
    Wang ECY, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115:2412–2422PubMedGoogle Scholar
  317. 317.
    Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827PubMedGoogle Scholar
  318. 318.
    Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2:973–985PubMedGoogle Scholar
  319. 319.
    Watters JJ, Sommer JA, Fisette PL, Pfeiffer AZ, Aga M, Prabhu U, Guerra AN, Denlinger LC, Bertics PJ (2001) P2X7 nucleotide receptor: modulation of LPS-induced macrophage signaling and mediator production. Drug Dev Res 53:91–104Google Scholar
  320. 320.
    Wildman SS, Brown SG, King BF, Burnstock G (1999) Selectivity of diadenosine polyphosphates for rat P2X receptor subunits. Eur J Pharmacol 367:119–123PubMedGoogle Scholar
  321. 321.
    Wildman SS, Brown SG, Rahman M, Noel CA, Churchill L, Burnstock G, Unwin RJ, King BF (2002) Sensitization by extracellular Ca2+ of rat P2X5 receptor and its pharmacological properties compared with rat P2X1. Mol Pharmacol 62:957–966PubMedGoogle Scholar
  322. 322.
    Wildman SS, King BF, Burnstock G (1998) Zn2+ modulation of ATP-responses at recombinant P2X2 receptors and its dependence on extracellular pH. Br J Pharmacol 123:1214–1220PubMedGoogle Scholar
  323. 323.
    Wildman SS, King BF, Burnstock G (1999) Modulatory activity of extracellular H+ and Zn2+ on ATP-responses at rP2X1 and rP2X3 receptors. Br J Pharmacol 128:486–492PubMedGoogle Scholar
  324. 324.
    Wiley JS, Chen JR, Snook MB, Jamieson GP (1994) The P2Z-purinoceptor of human lymphocytes: actions of nucleotide agonists and irreversible inhibition by oxidized ATP. Br J Pharmacol 112:946–950PubMedGoogle Scholar
  325. 325.
    Wong AY, Burnstock G, Gibb AJ (2000) Single channel properties of P2X ATP receptors in outside-out patches from rat hippocampal granule cells. J Physiol 527:529–547PubMedGoogle Scholar
  326. 326.
    Worthington RA, Dutton JL, Poronnik P, Bennett MR, Barden JA (1999) Localisation of P2X receptors in human salivary gland epithelial cells and human embryonic kidney cells by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/Western blotting and immunofluorescence. Electrophoresis 20:2065–2070PubMedGoogle Scholar
  327. 327.
    Wu G, Whiteside GT, Lee G, Nolan S, Niosi M, Pearson MS, Ilyin VI (2004) A-317491, a selective P2X3/P2X2/3 receptor antagonist, reverses inflammatory mechanical hyperalgesia through action at peripheral receptors in rats. Eur J Pharmacol 504:45–53PubMedGoogle Scholar
  328. 328.
    Wynn G, Ma B, Ruan HZ, Burnstock G (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol 287:G647–G657PubMedGoogle Scholar
  329. 329.
    Wynn G, Rong W, Xiang Z, Burnstock G (2003) Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. Gastroenterology 125:1398–1409PubMedGoogle Scholar
  330. 330.
    Xiang Z, Bo X, Burnstock G (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105–108PubMedGoogle Scholar
  331. 331.
    Xiang Z, Burnstock G (2005) Changes in expression of P2X purinoceptors in rat cerebellum during postnatal development. Dev Brain Res 156:147–157Google Scholar
  332. 332.
    Xiong K, Hu XQ, Stewart RR, Weight FF, Li C (2005) The mechanism by which ethanol inhibits rat P2X4 receptors is altered by mutation of histidine 241. Br J Pharmacol 145:576–586PubMedGoogle Scholar
  333. 333.
    Yiangou Y, Facer P, Baecker PA, Ford APDW, Knowles CH, Chan CL, Williams NS, Anand P (2001) ATP-gated ion channel P2X3 is increased in human inflammatory bowel disease. Neurogastroenterol Motil 13:365–369PubMedGoogle Scholar
  334. 334.
    Yiangou Y, Facer P, Ford A, Brady C, Wiseman O, Fowler CJ, Anand P (2001) Capsaicin receptor VR1 and ATP-gated ion channel P2X3 in human urinary bladder. BJU Int 87:774–779PubMedGoogle Scholar
  335. 335.
    Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525:143–158PubMedGoogle Scholar
  336. 336.
    Zhong Y, Dunn PM, Burnstock G (2000) Guinea-pig sympathetic neurons express varying proportions of two distinct P2X receptors. J Physiol 523:391–402PubMedGoogle Scholar
  337. 337.
    Zhong Y, Dunn PM, Burnstock G (2000) Pharmacological comparison of P2X receptors on rat coeliac, mouse coeliac and mouse pelvic ganglion neurons. Neuropharmacology 39:172–180PubMedGoogle Scholar
  338. 338.
    Zhong Y, Dunn PM, Burnstock G (2001) Multiple P2X receptors on guinea-pig pelvic ganglion neurons exhibit novel pharmacological properties. Br J Pharmacol 132:221–233PubMedGoogle Scholar
  339. 339.
    Zhong Y, Dunn PM, Xiang Z, Bo X, Burnstock G (1998) Pharmacological and molecular characterization of P2X receptors in rat pelvic ganglion neurons. Br J Pharmacol 125:771–781PubMedGoogle Scholar
  340. 340.
    Zhou X, Galligan JJ (1996) P2X purinoceptors in cultured myenteric neurons of guinea-pig small intestine. J Physiol 496:719–729PubMedGoogle Scholar
  341. 341.
    Ziyal R, Ziganshin AU, Nickel P, Ardanuy U, Mutschler E, Lambrecht G, Burnstock G (1997) Vasoconstrictor responses via P2X-receptors are selectively antagonized by NF023 in rabbit isolated aorta and saphenous artery. Br J Pharmacol 120:954–960PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Joel R. Gever
    • 1
    Email author
  • Debra A. Cockayne
    • 2
  • Michael P. Dillon
    • 3
  • Geoffrey Burnstock
    • 4
  • Anthony P. D. W. Ford
    • 1
    • 2
  1. 1.Department of Biochemical PharmacologyRoche Palo AltoPalo AltoUSA
  2. 2.Department of NeuroscienceRoche Palo AltoPalo AltoUSA
  3. 3.Department of Medicinal ChemistryRoche Palo AltoPalo AltoUSA
  4. 4.Autonomic Neuroscience CentreRoyal Free and University College Medical SchoolLondonUK

Personalised recommendations