Pflügers Archiv

, Volume 452, Issue 5, pp 538–551 | Cite as

Functions of neuronal P2Y receptors

  • Simon Hussl
  • Stefan BoehmEmail author
Invited Review


Within the last 15 years, at least eight different G protein-coupled nucleotide receptors, i.e., P2Y receptors, have been characterized by molecular means. While ionotropic P2X receptors are mainly involved in fast synaptic neurotransmission, P2Y receptors rather mediate slower neuromodulatory effects. This P2Y receptor-dependent neuromodulation relies on changes in synaptic transmission via either pre- or postsynaptic sites of action. At both sites, the regulation of voltage-gated or transmitter-gated ion channels via G protein-linked signaling cascades has been identified as the predominant underlying mechanisms. In addition, neuronal P2Y receptors have been found to be involved in neurotoxic and neurotrophic effects of extracellular adenosine 5-triphosphate. This review provides an overview of the most prominent actions mediated by neuronal P2Y receptors and describes the signaling cascades involved.


G proteins P2Y receptor Voltage-gated Ca2+ channel Voltage-gated K+ channel Synaptic transmission 



Work in the authors’ laboratory is supported by grants from the Austrian Science Fund, FWF (P15797 and P17611), and from the Virologiefonds of the Medical University of Vienna.


  1. 1.
    Abbracchio MP, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA, Burnstock G (2003) Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52–55PubMedGoogle Scholar
  2. 2.
    Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475PubMedGoogle Scholar
  3. 3.
    Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Miras-Portugal MT, King BF, Gachet C, Jacobson KA, Weisman GA (2005) The recently deorphanized GPR80 (GPR99) proposed to be the P2Y15 receptor is not a genuine P2Y receptor. Trends Pharmacol Sci 26:8–9PubMedGoogle Scholar
  4. 4.
    Abe M, Endoh T, Suzuki T (2003) Extracellular ATP-induced calcium channel inhibition mediated by P1/P2Y purinoceptors in hamster submandibular ganglion neurons. Br J Pharmacol 138:1535–1543PubMedGoogle Scholar
  5. 5.
    Adams PR, Brown DA, Constanti A (1982) Pharmacological inhibition of the M-current. J Physiol 332:223–262PubMedGoogle Scholar
  6. 6.
    Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonte C, Aloisi F, Visentin S (2005) ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res Brain Res Rev 48:157–165PubMedGoogle Scholar
  7. 7.
    Akasu T, Hirai K, Koketsu K (1983) Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells. Brain Res 258:313–317PubMedGoogle Scholar
  8. 8.
    Amadio S, D’Ambrosi N, Cavaliere F, Murra B, Sancesario G, Bernardi G, Burnstock G, Volonté C (2002) P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology 42:489–501PubMedGoogle Scholar
  9. 9.
    Anderson CM, Parkinson FE (1997) Potential signalling roles for UTP and UDP: sources, regulation and release of uracil nucleotides. Trends Pharmacol Sci 18:387–392PubMedGoogle Scholar
  10. 10.
    Aono K, Nakanishi N, Yamada S (1990) Increase in intracellular Ca2+ level and modulation of nerve growth factor action on pheochromocytoma PC12h cells by extracellular ATP. Meikai Daigaku Shigaku Zasshi 19:221–229PubMedGoogle Scholar
  11. 11.
    Arthur DB, Akassoglou K, Insel PA (2005) P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Proc Natl Acad Sci USA 102:19138–19143PubMedGoogle Scholar
  12. 12.
    Barnard EA, Burnstock G, Webb TE (1994) G protein-coupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol Sci 15:67–70PubMedGoogle Scholar
  13. 13.
    Benians A, Leaney JL, Milligan G, Tinker A (2003) The dynamics of formation and action of the ternary complex revealed in living cells using a G-protein-gated K+ channel as a biosensor. J Biol Chem 278:10851–10858PubMedGoogle Scholar
  14. 14.
    Bennett GC, Ford APDW, Smith JAM, Emmett CJ, Webb TE, Boarder M (2003) P2Y receptor regulation of cultured rat cerebral cortical cells: calcium responses and mRNA expression in neurons and glia. Br J Pharmacol 139:279–288PubMedGoogle Scholar
  15. 15.
    Birder LA, Ruan HZ, Chopra B, Xiang Z, Barrick S, Buffington CA, Roppolo JR, Ford AP, de Groat WC, Burnstock G (2004) Alterations in P2X and P2Y purinergic receptor expression in urinary bladder from normal cats and cats with interstitial cystitis. Am J Physiol Renal Physiol 287:1084–1091Google Scholar
  16. 16.
    Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, Harden TK (2003) Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol 64:1210–1216PubMedGoogle Scholar
  17. 17.
    Boehm S (1998) Selective inhibition of M-type potassium channels in rat sympathetic neurons by uridine nucleotide preferring receptors. Br J Pharmacol 124:1261–1269PubMedGoogle Scholar
  18. 18.
    Boehm S (2003) Signaling via nucleotide receptors in the sympathetic nervous system. Drug News Perspect 16:141–148PubMedGoogle Scholar
  19. 19.
    Boehm S, Huck S, Freissmuth M (1996) Involvement of a phorbol ester-insensitive protein kinase C in the alpha2-adrenergic inhibition of voltage-gated calcium current in chick sympathetic neurons. J Neurosci 16:4596–4603PubMedGoogle Scholar
  20. 20.
    Boehm S, Huck S, Illes P (1995) UTP- and ATP-triggered transmitter release from rat sympathetic neurones via separate receptors. Br J Pharmacol 116:2341–2343PubMedGoogle Scholar
  21. 21.
    Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43–99PubMedGoogle Scholar
  22. 22.
    Bofill-Cardona E, Vartian N, Nanoff C, Freissmuth M, Boehm S (2000) Two different signaling mechanisms involved in the excitation of rat sympathetic neurons by uridine nucleotides. Mol Pharmacol 57:1165–1172PubMedGoogle Scholar
  23. 23.
    Borvendeg SJ, Gerevich Z, Gillen C, Illes P (2003) P2Y receptor-mediated inhibition of voltage-dependent Ca2+ channels in rat dorsal root ganglion neurons. Synapse 47:159–161PubMedGoogle Scholar
  24. 24.
    Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620PubMedGoogle Scholar
  25. 25.
    Boyer JL, Romero-Avila T, Schachter JB, Harden TK (1996) Identification of competitive antagonists of the P2Y1 receptor. Mol Pharmacol 50:1323–1329PubMedGoogle Scholar
  26. 26.
    Brown DA (1983) Slow cholinergic excitation—a mechanism for increasing neuronal excitability. Trends Neurosci 6:302–307Google Scholar
  27. 27.
    Brown DA, Filippov AK, Barnard EA (2000) Inhibition of potassium and calcium currents in neurones by molecularly-defined P2Y receptors. J Auton Nerv Syst 81:31–36PubMedGoogle Scholar
  28. 28.
    Brown P, Dale N (2002) Modulation of K(+) currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation. J Physiol 540:843–850PubMedGoogle Scholar
  29. 29.
    Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581PubMedGoogle Scholar
  30. 30.
    Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139PubMedGoogle Scholar
  31. 31.
    Burnstock G (2003) Purinergic receptors in the nervous system. Curr Top Membr 54:307–368Google Scholar
  32. 32.
    Calvert JA, Atterbury-Thomas AE, Leon C, Forsythe ID, Gachet C, Evans RJ (2004) Evidence for P2Y1, P2Y2, P2Y6 and atypical UTP-sensitive receptors coupled to rises in intracellular calcium in mouse cultured superior cervical ganglion neurons and glia. Br J Pharmacol 143:525–532PubMedGoogle Scholar
  33. 33.
    Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E (2003) International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55:579–581PubMedGoogle Scholar
  34. 34.
    Cavaliere F, D’Ambrosi N, Ciotti MT, Mancino G, Sancesario G, Bernardi G, Volonte C (2001a) Glucose deprivation and chemical hypoxia: neuroprotection by P2 receptor antagonists. Neurochem Int 38:189–197PubMedGoogle Scholar
  35. 35.
    Cavaliere F, D’Ambrosi N, Sancesario G, Bernardi G, Volonté C (2001b) Hypoglycaemia-induced cell death: features of neuroprotection by the P2 receptor antagonist basilen blue. Neurochem Int 38:199–207PubMedGoogle Scholar
  36. 36.
    Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, Zhu Y, McLaughlin MM, Murdock P, McMillan L, Trill J, Swift A, Aiyar N, Taylor P, Vawter L, Naheed S, Szekeres P, Hervieu G, Scott C, Watson JM, Murphy AJ, Duzic E, Klein C, Bergsma DJ, Wilson S, Livi GP (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275:10767–10771PubMedGoogle Scholar
  37. 37.
    Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM (2001) Identification of a novel human ADP receptor coupled to G(i). J Biol Chem 276:41479–4185PubMedGoogle Scholar
  38. 38.
    Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–1973PubMedGoogle Scholar
  39. 39.
    Connolly GP, Harrison PJ, Stone TW (1993) Action of purine and pyrimidine nucleotides on the rat superior cervical ganglion. Br J Pharmacol 110:1297–1304PubMedGoogle Scholar
  40. 40.
    Cunha RA, Ribeiro JA (2000) ATP as a presynaptic modulator. Life Sci 68:119–137PubMedGoogle Scholar
  41. 41.
    Currie KP, Fox AP (1996) ATP serves as a negative feedback inhibitor of voltage-gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neuron 16:1027–1036PubMedGoogle Scholar
  42. 42.
    D’Ambrosi N, Murra B, Cavaliere F, Amadio S, Bernardi G, Burnstock G, Volonte C (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108:527–534PubMedGoogle Scholar
  43. 43.
    D’Ambrosi N, Murra B, Vacca F, Volonte C (2004) Pathways of survival induced by NGF and extracellular ATP after growth factor deprivation. Prog Brain Res 146:93–100PubMedCrossRefGoogle Scholar
  44. 44.
    D’Ambrosi N, Cavaliere F, Merlo D, Milazzo L, Mercanti D, Volonté C (2000) Antagonists of P2 receptor prevent NGF-dependent neuritogenesis in PC12 cells. Neuropharmacology 39:1083–1094PubMedGoogle Scholar
  45. 45.
    Dave S, Mogul DJ (1996) ATP receptor activation potentiates a voltage-dependent Ca channel in hippocampal neurons. Brain Res 715:208–216PubMedGoogle Scholar
  46. 46.
    Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862PubMedGoogle Scholar
  47. 47.
    Deng G, Matute C, Kumar CK, Fogarty DJ, Miledi R (1998) Cloning and expression of a P2y purinoceptor from the adult bovine corpus callosum. Neurobiol Dis 5:259–270PubMedGoogle Scholar
  48. 48.
    Diverse-Pierluissi M, Dunlap K (1993) Distinct, convergent second messenger pathways modulate neuronal calcium currents. Neuron 10:753–760PubMedGoogle Scholar
  49. 49.
    Diverse-Pierluissi M, Dunlap K, Westhead EW (1991) Multiple actions of extracellular ATP on calcium currents in cultured bovine chromaffin cells. Proc Natl Acad Sci USA 88:1261–1265PubMedGoogle Scholar
  50. 50.
    Dodson PD, Forsythe ID (2004) Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci 27:210–217PubMedGoogle Scholar
  51. 51.
    Dolphin AC (1999) L-type calcium channel modulation. Adv Second Messenger Phosphoprotein Res 33:153–177PubMedGoogle Scholar
  52. 52.
    Dolphin AC (2003) G protein modulation of voltage-gated calcium channels. Pharmacol Rev 55:607–627PubMedGoogle Scholar
  53. 53.
    Doupnik CA, Davidson N, Lester HA, Kofuji P (1997) RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci USA 94:10461–10466PubMedGoogle Scholar
  54. 54.
    Elmslie KS (1992) Calcium current modulation in frog sympathetic neurones: multiple neurotransmitters and G proteins. J Physiol 451:229–246PubMedGoogle Scholar
  55. 55.
    Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633PubMedGoogle Scholar
  56. 56.
    Filippov AK, Brown DA (1996) Activation of nucleotide receptors inhibits high-threshold calcium currents in NG108-15 neuronal hybrid cells. Eur J Neurosci 8:1149–1155PubMedGoogle Scholar
  57. 57.
    Filippov AK, Brown DA, Barnard EA (2000) The P2Y(1) receptor closes the N-type Ca(2+) channel in neurones, with both adenosine triphosphates and diphosphates as potent agonists. Br J Pharmacol 129:1063–1066PubMedGoogle Scholar
  58. 58.
    Filippov AK, Fernandez-Fernandez JM, Marsh SJ, Simon J, Barnard EA, Brown DA (2004) Activation and inhibition of neuronal G protein-gated inwardly rectifying K(+) channels by P2Y nucleotide receptors. Mol Pharmacol 66:468–477PubMedGoogle Scholar
  59. 59.
    Filippov AK, Selyanko AA, Robbins J, Brown DA (1994) Activation of nucleotide receptors inhibits M-type K current [IK(M)] in neuroblastoma × glioma hybrid cells. Pflugers Arch 429:223–230PubMedGoogle Scholar
  60. 60.
    Filippov AK, Simon J, Barnard EA, Brown DA (2003) Coupling of the nucleotide P2Y4 receptor to neuronal ion channels. Br J Pharmacol 138:400–406PubMedGoogle Scholar
  61. 61.
    Filippov AK, Webb TE, Barnard EA, Brown DA (1998) P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J Neurosci 18:5170–5179PubMedGoogle Scholar
  62. 62.
    Filippov AK, Webb TE, Barnard EA, Brown DA (1999) Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones. Br J Pharmacol 126:1009–1017PubMedGoogle Scholar
  63. 63.
    Fong AY, Krstew EV, Barden J, Lawrence AJ (2002) Immunoreactive localisation of P2Y1 receptors within the rat and human nodose ganglia and rat brainstem: comparison with [alpha 33P]deoxyadenosine 5′-triphosphate autoradiography. Neuroscience 113:809–823PubMedGoogle Scholar
  64. 64.
    Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324PubMedGoogle Scholar
  65. 65.
    Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–203Google Scholar
  66. 66.
    Fumagalli M, Trincavelli L, Lecca D, Martini C, Ciana P, Abbracchio MP (2004) Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol 68:113–124PubMedGoogle Scholar
  67. 67.
    Galietta LJ, Falzoni S, Di Virgilio F, Romeo G, Zegarra-Moran O (1997) Characterization of volume-sensitive taurine- and Cl(−)-permeable channels. Am J Physiol 273:C57–C66PubMedGoogle Scholar
  68. 68.
    Gamper N, Li Y, Shapiro MS (2005) Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell 16:3538–3551PubMedGoogle Scholar
  69. 69.
    Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS (2004) Phosphatidylinositol 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 24:10980–10992PubMedGoogle Scholar
  70. 70.
    Gandia L, Garcia AG, Morad M (1993) ATP modulation of calcium channels in chromaffin cells. J Physiol 470:55–72PubMedGoogle Scholar
  71. 71.
    Gerevich Z, Borvendeg SJ, Schroder W, Franke H, Wirkner K, Norenberg W, Furst S, Gillen C, Illes P (2004) Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADP-induced analgesia. J Neurosci 24:797–807PubMedGoogle Scholar
  72. 72.
    Gerevich Z, Muller C, Illes P (2005) Metabotropic P2Y1 receptors inhibit P2X3 receptor-channels in rat dorsal root ganglion neurons. Eur J Pharmacol 521:34–38Google Scholar
  73. 73.
    Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (2003) International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol Rev 55:583–586PubMedGoogle Scholar
  74. 74.
    Haley JE, Abogadie FC, Delmas P, Dayrell M, Vallis Y, Milligan G, Caulfield MP, Brown DA, Buckley NJ (1998) The alpha subunit of Gq contributes to muscarinic inhibition of the M-type potassium current in sympathetic neurons. J Neurosci 18:4521–4531PubMedGoogle Scholar
  75. 75.
    Haley JE, Abogadie FC, Fernandez-Fernandez JM, Dayrell M, Vallis Y, Buckley NJ, Brown DA (2000) Bradykinin, but not muscarinic, inhibition of M-current in rat sympathetic ganglion neurons involves phospholipase C-beta 4. J Neurosci 20:RC105PubMedGoogle Scholar
  76. 76.
    Haley JE, Delmas P, Offermanns S, Abogadie FC, Simon MI, Buckley NJ, Brown DA (2000) Muscarinic inhibition of calcium current and M current in Galpha q-deficient mice. J Neurosci 20:3973–3979PubMedGoogle Scholar
  77. 77.
    Heilbronn A, Maienschein V, Carstensen K, Gann W, Zimmermann H (1995) Crucial role of ecto-5′-nucleotidase in differentiation and survival of developing neural cells. Neuroreport 7:257–261Google Scholar
  78. 78.
    Heine C, Heimrich B, Vogt J, Wegner A, Illes P, Franke H (2006) P2 receptor-stimulation influences axonal outgrowth in the developing hippocampus in vitro. Neuroscience 138:303–311PubMedGoogle Scholar
  79. 79.
    Hervás C, Pérez-Sen R, Miras-Portugal MT (2003) Coexpression of functional P2X and P2Y nucleotide receptors in single cerebellar granule cells. J Neurosci Res 73:384–399PubMedGoogle Scholar
  80. 80.
    Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531–536PubMedGoogle Scholar
  81. 81.
    Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207PubMedGoogle Scholar
  82. 82.
    Houston D, Ohno M, Nicholas RA, Jacobson KA, Harden TK (2005) [(32)P]2-iodo-N(6)-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([(32)P]MRS2500), a novel radioligand for quantification of native P2Y(1) receptors. Br J PharmacolGoogle Scholar
  83. 83.
    Hu HZ, Gao N, Zhu MX, Liu S, Ren J, Gao C et al (2003) Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J Physiol 550:493–504PubMedGoogle Scholar
  84. 84.
    Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806PubMedGoogle Scholar
  85. 85.
    Huang CM, Kao LS (1996) Nerve growth factor, epidermal growth factor, and insulin differentially potentiate ATP-induced [Ca2+]i rise and dopamine secretion in PC12 cells. J Neurochem 66:124–130Google Scholar
  86. 86.
    Ikeda SR, Dunlap K (1999) Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprotein Res 33:131–151PubMedGoogle Scholar
  87. 87.
    Ikeuchi Y, Nishizaki T (1995a) ATP-evoked potassium currents in rat striatal neurons are mediated by a P2 purinergic receptor. Neurosci Lett 190:89–92PubMedGoogle Scholar
  88. 88.
    Ikeuchi Y, Nishizaki T (1995b) The P2Y purinoceptor-operated potassium channel is possibly regulated by the beta gamma subunits of a pertussis toxin-insensitive G-protein in cultured rat inferior colliculus neurons. Biochem Biophys Res Commun 214:589–596PubMedGoogle Scholar
  89. 89.
    Ikeuchi Y, Nishizaki T (1996) P2 purinoceptor-operated potassium channel in rat cerebellar neurons. Biochem Biophys Res Commun 218:67–71PubMedGoogle Scholar
  90. 90.
    Ikeuchi Y, Nishizaki T, Okada Y (1996) Repetitive applications of ATP potentiate potassium current by Ca2+/calmodulin kinase in cultured rat hippocampal neurons. Neurosci Lett 203:115–118PubMedGoogle Scholar
  91. 91.
    Illes P, Ribeiro JA (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483:5–17PubMedGoogle Scholar
  92. 92.
    Inbe H, Watanabe S, Miyawaki M, Tanabe E, Encinas JA (2004) Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J Biol Chem 279:19790–19799PubMedGoogle Scholar
  93. 93.
    Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226PubMedGoogle Scholar
  94. 94.
    Jacobson KA, Jarvis MF, Williams M (2002) Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 45:4057–4093PubMedGoogle Scholar
  95. 95.
    Kaczmarek L, Levitan IB (1987) Neuromodulation: the biochemical control of neuronal excitability. Oxford University Press, New YorkGoogle Scholar
  96. 96.
    Kammermeier PJ, Ruiz-Velasco V, Ikeda SR (2000) A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both Galpha q/11 and Gbeta gamma. J Neurosci 20:5623–5629PubMedGoogle Scholar
  97. 97.
    Kennedy C, Qi AD, Herold CL, Harden TK, Nicholas RA (2000) ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor. Mol Pharmacol 57:926–931PubMedGoogle Scholar
  98. 98.
    Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174PubMedGoogle Scholar
  99. 99.
    Kittner H, Franke H, Fischer W, Schultheis N, Krügel U, Illes P (2003) Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology 28:435–444PubMedGoogle Scholar
  100. 100.
    Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HH, MacDonald JF (2002) A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 35:1111–1122PubMedGoogle Scholar
  101. 101.
    Kristufek D, Koth G, Motejlek A, Schwarz K, Huck S, Boehm S (1999) Modulation of spontaneous and stimulation-evoked transmitter release from rat sympathetic neurons by the cognition enhancer linopirdine: insights into its mechanisms of action. J Neurochem 72:2083–2091PubMedGoogle Scholar
  102. 102.
    Krügel U, Kittner H, Franke H, Illes P (2001) Stimulation of P2 receptors in the ventral tegmental area enhances dopaminergic mechanisms in vivo. Neuropharmacology 40:1084–1093PubMedGoogle Scholar
  103. 103.
    Kubista H, Lechner SG, Wolf AM, Boehm S (2003) Attenuation of the P2Y receptor-mediated control of neuronal Ca2+ channels in PC12 cells by antithrombotic drugs. Br J Pharmacol 138:343–350PubMedGoogle Scholar
  104. 104.
    Kulick MB, von Kugelgen I (2002) P2Y-receptors mediating an inhibition of the evoked entry of calcium through N-type calcium channels at neuronal processes. J Pharmacol Exp Ther 303:520–526PubMedGoogle Scholar
  105. 105.
    Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–95PubMedGoogle Scholar
  106. 106.
    Lechner SG, Dorostkar MM, Mayer M, Edelbauer H, Pankevych H, Boehm S (2004) Autoinhibition of transmitter release from PC12 cells and sympathetic neurons through a P2Y receptor-mediated inhibition of voltage-gated Ca2+ channels. Eur J Neurosci 20:2917–2928PubMedGoogle Scholar
  107. 107.
    Lechner SG, Hussl S, Schicker KW, Drobny H, Boehm S (2005) Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca2+ channels. Mol Pharmacol 68:1387–1396PubMedGoogle Scholar
  108. 108.
    Lechner SG, Mayer M, Boehm S (2003) Activation of M1 muscarinic receptors triggers transmitter release from rat sympathetic neurons through an inhibition of M-type K+ channels. J Physiol 553:789–802PubMedGoogle Scholar
  109. 109.
    Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein–protein interactions with the dopamine D1 receptor. Cell 111:219–230PubMedGoogle Scholar
  110. 110.
    Lim W, Kim SJ, Yan HD, Kim J (1997) Ca2+-channel-dependent and -independent inhibition of exocytosis by extracellular ATP in voltage-clamped rat adrenal chromaffin cells. Pflugers Arch 435:34–42PubMedGoogle Scholar
  111. 111.
    Liu D-M, Katnik C, Stafford M, Adams DJ (2000) P2Y purinoceptor activation mobilizes intracellular Ca2+ and induces a membrane current in rat intracardiac neurones. J Physiol 526:287–298PubMedGoogle Scholar
  112. 112.
    Lopez HS, Adams PR (1989) A G protein mediates the inhibition of the voltage-dependent potassium M current by Muscarine, LHRH, substance P and UTP in bullfrog sympathetic neurons. Eur J Neurosci 1:529–542PubMedGoogle Scholar
  113. 113.
    Lu WY, Xiong ZG, Lei S, Orser BA, Dudek E, Browning MD, MacDonald JF (1999) G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci 2:331–338PubMedGoogle Scholar
  114. 114.
    Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687–695PubMedGoogle Scholar
  115. 115.
    Luthardt J, Borvendeg SJ, Sperlagh B, Poelchen W, Wirkner K, Illes P (2003) P2Y(1) receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex. Neurochem Int 42:161–172PubMedGoogle Scholar
  116. 116.
    Mamedova LK, Joshi BV, Gao ZG, von Kugelgen I, Jacobson KA (2004) Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors. Biochem Pharmacol 67:1763–1770PubMedGoogle Scholar
  117. 117.
    Man JG de, Winter BY de, Seerden TC, Schepper HU de, Herman AG, Pelckmans PA (2003) Functional evidence that ATP or a related purine is an inhibitory NANC neurotransmitter in the mouse jejunum: study on the identity of P2X and P2Y purinoceptors involved. Br J Pharmacol 140:1108–1116PubMedGoogle Scholar
  118. 118.
    Mark MD, Herlitze S (2000) G-protein mediated gating of inward-rectifier K+ channels. Eur J Biochem 267:5830–5836PubMedGoogle Scholar
  119. 119.
    Mark MD, Ruppersberg JP, Herlitze S (2000) Regulation of GIRK channel deactivation by Galpha(q) and Galpha(i/o) pathways. Neuropharmacology 39:2360–2373PubMedGoogle Scholar
  120. 120.
    Marrion NV (1997) Control of M-current. Annu Rev Physiol 59:483–504PubMedGoogle Scholar
  121. 121.
    Marteau F, Le Poul E, Communi D, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64:104–112PubMedGoogle Scholar
  122. 122.
    Martire M, Castaldo P, D’Amico M, Preziosi P, Annunziato L, Taglialatela M (2004) M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci 24:592–597PubMedGoogle Scholar
  123. 123.
    Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 79:1019–1088PubMedGoogle Scholar
  124. 124.
    Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, Austen KF, Boyce, JA (2003) Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc Natl Acad Sci USA 100:11589–11593PubMedGoogle Scholar
  125. 125.
    Mellor EA, Maekawa A, Austen KF, Boyce JA (2001) Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci USA 98:7964–7969PubMedGoogle Scholar
  126. 126.
    Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C (2000) ATP inhibits glutamate release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J Pharmacol Exp Ther 293:172–179PubMedGoogle Scholar
  127. 127.
    Meng H, Sakakibara M, Nakazawa H, Tokimasa T (2003) Pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid can antagonize the purinoceptor-mediated inhibition of M-current in bullfrog sympathetic neurons. Neurosci Lett 337:93–96PubMedGoogle Scholar
  128. 128.
    Miras-Portugal MT, Pintor J, Gualix J (2003) Ca2+ signalling in brain synaptosomes activated by dinucleotides. J Membr Biol 194:1–10PubMedGoogle Scholar
  129. 129.
    Molliver DC, Cook SP, Carlsten JA, Wright DE, McCleskey EW (2002) ATP and UTP excite sensory neurons and induce CREB phosphorylation through the metabotropic receptor, P2Y2. Eur J Neurosci 16:1850–1860PubMedGoogle Scholar
  130. 130.
    Moore D, Chambers J, Waldvogel H, Faull R, Emson P (2000) Regional and cellular distribution of the P2Y(1) purinergic receptor in the human brain: striking neuronal localisation. J Comp Neurol 421:374–384PubMedGoogle Scholar
  131. 131.
    Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521:107–119PubMedGoogle Scholar
  132. 132.
    Móran-Jiménez MJ, Matute C (2000) Immunohistochemical localization of the P2Y(1) purinergic receptor in neurons and glial cells of the central nervous system. Brain Res 78:50–58Google Scholar
  133. 133.
    Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C, Noguchi K, Tominaga M (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23:6058–6062PubMedGoogle Scholar
  134. 134.
    Mosbacher J, Maier R, Fakler B, Glatz A, Crespo J, Bilbe G (1998) P2Y receptor subtypes differentially couple to inwardly-rectifying potassium channels. FEBS Lett 436:104–110PubMedGoogle Scholar
  135. 135.
    Moskvina E, Unterberger U, Boehm S (2003) Activity-dependent autocrine–paracrine activation of neuronal P2Y receptors. J Neurosci 23:7479–7488PubMedGoogle Scholar
  136. 136.
    Mullner C, Vorobiov D, Bera AK, Uezono Y, Yakubovich D, Frohnwieser-Steinecker B, Dascal N, Schreibmayer W. (2000) Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase. J Gen Physiol 115:547–558PubMedGoogle Scholar
  137. 137.
    Nakamura F, Strittmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci USA 93(19):10465–10470PubMedGoogle Scholar
  138. 138.
    Nakazawa K, Inoue K (1994) ATP reduces voltage-activated K+ current in cultured rat hippocampal neurons. Pflugers Arch 429:143–145PubMedGoogle Scholar
  139. 139.
    Nandanan E, Camaioni E, Jang SY, Kim YC, Cristalli G, Herdewijn P, Secrist JA 3rd, Tiwari KN, Mohanram A, Harden TK, Boyer JL, Jacobson KA (1999) Structure-activity relationships of bisphosphate nucleotide derivatives as P2Y1 receptor antagonists and partial agonists. J Med Chem 42:1625–1638PubMedGoogle Scholar
  140. 140.
    Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18PubMedGoogle Scholar
  141. 141.
    Nicholas RA, Watt WC, Lazarowski ER, Li Q, Harden K (1996) Uridine nucleotide selectivity of three phospholipase C-activating P2 receptors: identification of a UDP-selective, a UTP-selective, and an ATP- and UTP-specific receptor. Mol Pharmacol 50:224–229PubMedGoogle Scholar
  142. 142.
    Nishizaki T, Ikeuchi Y (1996) Adenosine evokes potassium currents by protein kinase C activated via a novel signaling pathway in superior colliculus neurons. FEBS Lett 378:1–6PubMedGoogle Scholar
  143. 143.
    Norenberg W, Göbel I, Meyer A, Cox SL, Starke K, Trendelenburg AU (2001) Stimulation of mouse cultured sympathetic neurons by uracil but not adenine nucleotides. Neuroscience 103:227–236PubMedGoogle Scholar
  144. 144.
    Norenberg W, von Kugelgen I, Meyer A, Illes P, Starke K (2000) M-type K+ currents in rat cultured thoracolumbar sympathetic neurones and their role in uracil nucleotide-evoked noradrenaline release. Br J Pharmacol 129:709–723PubMedGoogle Scholar
  145. 145.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  146. 146.
    North RA, Barnard EA (1997) Nucleotide receptors. Curr Opin Neurobiol 7:346–357PubMedGoogle Scholar
  147. 147.
    Ortinau S, Laube B, Zimmermann H (2003) ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J Neurosci 23:4996–5003PubMedGoogle Scholar
  148. 148.
    Papp L, Balazsa T, Kofalvi A, Erdelyi F, Szabo G, Vizi ES, Sperlagh B (2004) P2X receptor activation elicits transporter-mediated noradrenaline release from rat hippocampal slices. J Pharmacol Exp Ther 310:973–980PubMedGoogle Scholar
  149. 149.
    Peleg S, Varon D, Ivanina T, Dessauer CW, Dascal N (2002) G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron 33:87–99PubMedGoogle Scholar
  150. 150.
    Peoples RW, Li C (1998) Inhibition of NMDA-gated ion channels by the P2 purinoceptor antagonists suramin and reactive blue 2 in mouse hippocampal neurones. Br J Pharmacol 124:400–408PubMedGoogle Scholar
  151. 151.
    Pooler AM, Guez DH, Benedictus R, Wurtman RJ (2005) Uridine enhances neurite outgrowth in nerve growth factor-differentiated PC12 cells. Neuroscience 134:207–214PubMedGoogle Scholar
  152. 152.
    Powell AD, Teschemacher AG, Seward EP (2000) P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. J Neurosci 20:606–616PubMedGoogle Scholar
  153. 153.
    Price GD, Robertson SJ, Edwards FA (2003) Long-term potentiation of glutamatergic synaptic transmission induced by activation of presynaptic P2Y receptors in the rat medial habenula nucleus. Eur J Neurosci 17:844–850PubMedGoogle Scholar
  154. 154.
    Qi AD, Zambon AC, Insel PA, Nicholas RA (2001) An arginine/glutamine difference at the juxtaposition of transmembrane domain 6 and the third extracellular loop contributes to the markedly different nucleotide selectivities of human and canine P2Y11 receptors. Mol Pharmacol 60:1375–1382PubMedGoogle Scholar
  155. 155.
    Queiroz G, Talaia C, Goncalves J (2003) ATP modulates noradrenaline release by activation of inhibitory P2Y receptors and facilitatory P2X receptors in the rat vas deferens. J Pharmacol Exp Ther 307:809–815PubMedGoogle Scholar
  156. 156.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  157. 157.
    Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335PubMedGoogle Scholar
  158. 158.
    Robbins J (2001) KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther 90:1–19PubMedGoogle Scholar
  159. 159.
    Robertson SJ, Ennion SJ, Evans RJ, Edwards FA (2001) Synaptic P2X receptors. Curr Opin Neurobiol 11:378–386PubMedGoogle Scholar
  160. 160.
    Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295PubMedGoogle Scholar
  161. 161.
    Ruan H-Z, Birder LA, de Groat WC, Tai C, Roppolo J, Buffington CA, Burnstock G (2005a) Localization of P2X and P2Y receptors in dorsal root ganglia of the cat. J Histochem Cytochem 53:1273–1282PubMedGoogle Scholar
  162. 162.
    Ruan H-Z, Birder LA, Xiang Z, Chopra B, Buffington T, Tai C, Roppolo JR, de Groat WC, Burnstock G (2005b) Expression of P2X and P2Y receptors in the intramural parasympathetic ganglia of the cat urinary bladder Am J Physiol Renal Physiol (in press)Google Scholar
  163. 163.
    Ruan H-Z, Burnstock G (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol 120:415–426PubMedGoogle Scholar
  164. 164.
    Safiulina VF, Kasyanov AM, Sokolova E, Cherubini E, Giniatullin R (2005) ATP contributes to the generation of network-driven giant depolarizing potentials in the neonatal rat hippocampus. J Physiol 15(565):981–992Google Scholar
  165. 165.
    Saitow F, Murakoshi T, Suzuki H, Konishi S (2005) Metabotropic P2Y purinoceptor-mediated presynaptic and postsynaptic enhancement of cerebellar GABAergic transmission. J Neurosci 25:2108–2116PubMedGoogle Scholar
  166. 166.
    Sak K, Webb TE (2002) A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys 397:131–136PubMedGoogle Scholar
  167. 167.
    Sanada M, Yasuda H, Omatsu-Kanbe M, Sango K, Isono T, Matsuura H, Kikkawa R (2002) Increase in intracellular Ca(2+) and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion neurons. Neuroscience 111:413–422PubMedGoogle Scholar
  168. 168.
    Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44:242–250PubMedGoogle Scholar
  169. 169.
    Scamps F, Vassort G (1994) Pharmacological profile of the ATP-mediated increase in L-type calcium current amplitude and activation of a non-specific cationic current in rat ventricular cells. Br J Pharmacol 113:982–986PubMedGoogle Scholar
  170. 170.
    Scheibler P, Pesic M, Franke H, Reinhardt R, Wirkner K, Illes P, Norenberg W (2004) P2X2 and P2Y1 immunofluorescence in rat neostriatal medium-spiny projection neurones and cholinergic interneurones is not linked to respective purinergic receptor function. Br J Pharmacol 143:119–131PubMedGoogle Scholar
  171. 171.
    Selyanko AA, Brown DA (1996) Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron 16:151–162PubMedGoogle Scholar
  172. 172.
    Simon J, Filippov AK, Goransson S, Wong YH, Frelin C, Michel AD, Brown DA, Barnard EA (2002) Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem 277:31390–31400PubMedGoogle Scholar
  173. 173.
    Skladchikova G, Ronn LC, Berezin V, Bock E (1999) Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 57:207–218PubMedGoogle Scholar
  174. 174.
    Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179PubMedGoogle Scholar
  175. 175.
    Stevens CF (2004) Presynaptic function. Curr Opin Neurobiol 14:341–345PubMedGoogle Scholar
  176. 176.
    Stjarne L, Astrand P (1985) Relative pre- and postjunctional roles of noradrenaline and adenosine 5′-triphosphate as neurotransmitters of the sympathetic nerves of guinea-pig and mouse vas deferens. Neuroscience 14:929–946PubMedGoogle Scholar
  177. 177.
    Suh BC, Hille B (2002) Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35:507–520PubMedGoogle Scholar
  178. 178.
    Tokimasa T, Akasu T (1990) ATP regulates muscarine-sensitive potassium current in dissociated bull-frog primary afferent neurones. J Physiol 426:241–264PubMedGoogle Scholar
  179. 179.
    Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956PubMedGoogle Scholar
  180. 180.
    Trendelenburg AU, Bultmann R (2000) P2 receptor-mediated inhibition of dopamine release in rat neostriatum. Neuroscience 96:249–252PubMedGoogle Scholar
  181. 181.
    van Giezen JJ, Humphries RG (2005) Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin Thromb Hemost 31:195–204PubMedGoogle Scholar
  182. 182.
    Vartian N, Boehm S (2001) P2Y receptor-mediated inhibition of voltage-activated Ca2+ currents in PC12 cells. Eur J Neurosci 13:899–908PubMedGoogle Scholar
  183. 183.
    Vartian N, Moskvina E, Scholze T, Unterberger U, Allgaier C, Boehm S (2001) UTP evokes noradrenaline release from rat sympathetic neurons by activation of protein kinase C. J Neurochem 77:876–885PubMedGoogle Scholar
  184. 184.
    Vial C, Roberts JA, Evans RJ (2004a) Molecular properties of ATP-gated P2X receptor ion channels. Trends Pharmacol Sci 25:487–493PubMedGoogle Scholar
  185. 185.
    Vial C, Tobin AB, Evans RJ (2004b) G-protein-coupled receptor regulation of P2X(1) receptors does not involve direct channel phosphorylation. Biochem J 382:101–110PubMedGoogle Scholar
  186. 186.
    von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther (in press)Google Scholar
  187. 187.
    von Kugelgen I, Koch H, Starke K (1997a) P2 receptor-mediated inhibition of serotonin release in rat brain cortex. Neuropharmacology 36:1221–1227Google Scholar
  188. 188.
    von Kugelgen I, Kurz K, Starke K (1993) Axon terminal P2-purinoceptors in feedback control of sympathetic transmitter release. Neuroscience 56:263–267Google Scholar
  189. 189.
    von Kügelgen I, Nörenberg W, Illes P, Schobert A, Starke K (1997b) Differences in the mode of stimulation of cultured rat sympathetic neurons between ATP and UDP. Neuroscience 78:935–941Google Scholar
  190. 190.
    von Kugelgen I, Spath L, Starke K (1994) Evidence for P2- purinoceptor-mediated inhibition of noradrenaline release in at brain cortex. Br J Pharmacol 113:815–822Google Scholar
  191. 191.
    Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, Gonzalez FA, Seye CI, Erb L (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31:169–183PubMedGoogle Scholar
  192. 192.
    White PJ, Webb TE, Boarder MR (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol 63:1356–1363PubMedGoogle Scholar
  193. 193.
    Wirkner K, Koles L, Thummler S, Luthardt J, Poelchen W, Franke H, Furst S, Illes P (2002) Interaction between P2Y and NMDA receptors in layer V pyramidal neurons of the rat prefrontal cortex. Neuropharmacology 42:476–488PubMedGoogle Scholar
  194. 194.
    Wirkner K, Schweigel J, Gerevich Z, Franke H, Allgaier C, Barsoumian EL, Draheim H, Illes P (2004) Adenine nucleotides inhibit recombinant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type. Br J Pharmacol 141:141–151PubMedGoogle Scholar
  195. 195.
    Xiang Z, Burnstock G (2005a) Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin. Histochem Cell Biol 124:379–390PubMedGoogle Scholar
  196. 196.
    Xiang Z, Burnstock G (2005b) Distribution of P2Y(6) and P2Y(12) receptor: their colocalization with calbindin, calretinin and nitric oxide synthase in the guinea pig enteric nervous system. Histochem Cell Biol (in press)Google Scholar
  197. 197.
    Xu J, Tse FW, Tse A (2003) ATP triggers intracellular Ca2+ release in type II cells of the rat carotid body. J Physiol 549:739–747PubMedGoogle Scholar
  198. 198.
    Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr. (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276:8608–8615PubMedGoogle Scholar
  199. 199.
    Zhang FL, Luo L, Gustafson E, Palmer K, Qiao X, Fan X, Yang S, Laz TM, Bayne M, Monsma F Jr (2002) P2Y(13): identification and characterization of a novel Galphai-coupled ADP receptor from human and mouse. J Pharmacol Exp Ther 301:705–713PubMedGoogle Scholar
  200. 200.
    Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982PubMedGoogle Scholar
  201. 201.
    Zimmermann H (1994) Signalling via ATP in the nervous system. Trends Neurosci 17:420–426PubMedGoogle Scholar
  202. 202.
    Zimmermann K, Reeh PW, Averbeck B (2002) ATP can enhance the proton-induced CGRP release through P2Y receptors and secondary PGE(2) release in isolated rat dura mater. Pain 97:259–265PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Center of Biomolecular Medicine and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria

Personalised recommendations