Pflügers Archiv

, Volume 452, Issue 5, pp 479–485 | Cite as

Purinergic transmission in the central nervous system

Invited Review

Abstract

The adenosine 5′-triphosphate (ATP), discovered in 1929 by Karl Lohman, Cyrus Hartwell Fiske, and Yellagaprada SubbaRow, acts as an important extracellular signaling molecule. In the CNS, ATP can be released from synaptic terminals, either on its own or together with other neurotransmitters. After the release from the presynaptic terminals, ATP binds to a plethora of ionotropic and metabotropic receptors, which mediate its action as an excitatory neurotransmitter. Furthermore, ATP also acts as an important mediator in neuronal–glial communications because glial cells are endowed with numerous ATP receptors, which trigger Ca2+ signaling events and membrane currents in both macro and microglia. In addition, ATP can be released from astroglial cells, thereby acting as a mediator of glial–glial and glial–neuronal signaling.

Keywords

Purinoreceptors Synaptic transmission ATP Neuronal–glial interactions 

References

  1. 1.
    Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475PubMedCrossRefGoogle Scholar
  2. 2.
    Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA99:9840–9845PubMedCrossRefGoogle Scholar
  3. 3.
    Bardoni R, Goldstein PA, Lee CJ, Gu JG, MacDermott AB (1997) ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci 17:5297–5304PubMedGoogle Scholar
  4. 4.
    Barrera NP, Ormond SJ, Henderson RM, Murrell-Lagnado RD, Edwardson JM (2005) Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. J Biol Chem 280:10759–10765PubMedCrossRefGoogle Scholar
  5. 5.
    Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620PubMedCrossRefGoogle Scholar
  6. 6.
    Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969PubMedCrossRefGoogle Scholar
  7. 7.
    Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581PubMedGoogle Scholar
  8. 8.
    Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118Google Scholar
  9. 9.
    Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688PubMedGoogle Scholar
  10. 10.
    Chaudry IH (1982) Does ATP cross the cell plasma membrane. Yale J Biol Med 55:1–10PubMedGoogle Scholar
  11. 11.
    Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844PubMedGoogle Scholar
  12. 12.
    Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877PubMedCrossRefGoogle Scholar
  13. 13.
    Drury AN (1936) The physiological activity of nucleic acid and its derivatives. Physiol Rev 16:292–325Google Scholar
  14. 14.
    Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon mammalian heart. J Physiol (London) 68:213–237Google Scholar
  15. 15.
    Dunn PM, Blakeley AG (1988) Suramin: a reversible P2-purinoceptor antagonist in the mouse vas deferens. Br J Pharmacol 93:243–245PubMedGoogle Scholar
  16. 16.
    Edwards FA (1994) ATP receptors. Curr Opin Neurobiol 4:347–352PubMedCrossRefGoogle Scholar
  17. 17.
    Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147PubMedCrossRefGoogle Scholar
  18. 18.
    Edwards FA, Robertson SJ, Gibb AJ (1997) Properties of ATP receptor-mediated synaptic transmission in the rat medial habenula. Neuropharmacology 36:1253–1268PubMedCrossRefGoogle Scholar
  19. 19.
    Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505PubMedCrossRefGoogle Scholar
  20. 20.
    Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284PubMedCrossRefGoogle Scholar
  21. 21.
    Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633PubMedCrossRefGoogle Scholar
  22. 22.
    Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P (2001) P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108:421–429PubMedCrossRefGoogle Scholar
  23. 23.
    Fiske CH, SubbaRow Y (1929) Phosphorous compounds of muscle and liver. Science 70:381–382PubMedCrossRefGoogle Scholar
  24. 24.
    Giaume C, Venance L (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24:50–64PubMedCrossRefGoogle Scholar
  25. 25.
    Glynn IM (1968) Membrane adenosine triphosphatase and cation transport. Br Med Bull 24:165–169PubMedGoogle Scholar
  26. 26.
    Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528PubMedGoogle Scholar
  27. 27.
    Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261PubMedCrossRefGoogle Scholar
  28. 28.
    Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193PubMedCrossRefGoogle Scholar
  29. 29.
    Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23:4410–4419PubMedGoogle Scholar
  30. 30.
    Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 145:494–504PubMedGoogle Scholar
  31. 31.
    Illes P, Ribeiro JA (2004) Neuronal P2 receptors of the central nervous system. Curr Top Med Chem 4:831–838PubMedCrossRefGoogle Scholar
  32. 32.
    Jahr CE, Jessell TM (1983) ATP excites a subpopulation of rat dorsal horn neurones. Nature 304:730–733PubMedCrossRefGoogle Scholar
  33. 33.
    Jo YH, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804PubMedGoogle Scholar
  34. 34.
    Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2:241–245PubMedCrossRefGoogle Scholar
  35. 35.
    Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174PubMedCrossRefGoogle Scholar
  36. 36.
    Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A (1995) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871PubMedGoogle Scholar
  37. 37.
    Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995) Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol (London) 483(Pt 1):41–57Google Scholar
  38. 38.
    Kolb HA, Wakelam MJ (1983) Transmitter-like action of ATP on patched membranes of cultured myoblasts and myotubes. Nature 303:621–623PubMedCrossRefGoogle Scholar
  39. 39.
    Krishtal OA, Marchenko SM, Pidoplichko VI (1983) Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci Lett 35:41–45PubMedCrossRefGoogle Scholar
  40. 40.
    Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21PubMedCrossRefGoogle Scholar
  41. 41.
    Lippman F (1941) Metabolic generation and utilization of phosphate bond energy. Enzymology 1:99Google Scholar
  42. 42.
    Lohman K (1929) Uber die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17:624–625Google Scholar
  43. 43.
    Moller T, Kann O, Verkhratsky A, Kettenmann H (2000) Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59PubMedCrossRefGoogle Scholar
  44. 44.
    Mori M, Heuss C, Gahwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535:115–123PubMedCrossRefGoogle Scholar
  45. 45.
    Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536–542PubMedCrossRefGoogle Scholar
  46. 46.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  47. 47.
    Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10:3898–3902PubMedCrossRefGoogle Scholar
  48. 48.
    Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536PubMedCrossRefGoogle Scholar
  49. 49.
    Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2003) P2X receptor-mediated excitatory synaptic currents in somatosensory cortex. Mol Cell Neurosci 24:842–849PubMedCrossRefGoogle Scholar
  50. 50.
    Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116PubMedCrossRefGoogle Scholar
  51. 51.
    Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28:571–573PubMedCrossRefGoogle Scholar
  52. 52.
    Robertson SJ, Edwards FA (1998) ATP and glutamate are released from separate neurones in the rat medial habenula nucleus: frequency dependence and adenosine-mediated inhibition of release. J Physiol 508:691–701PubMedCrossRefGoogle Scholar
  53. 53.
    Robertson SJ, Ennion SJ, Evans RJ, Edwards FA (2001) Synaptic P2X receptors. Curr Opin Neurobiol 11:378–386PubMedCrossRefGoogle Scholar
  54. 54.
    Robitaille R (1995) Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction. J Neurosci 15:7121–7131PubMedGoogle Scholar
  55. 55.
    Silinsky EM, Gerzanich V, Vanner SM (1992) ATP mediates excitatory synaptic transmission in mammalian neurones. Br J Pharmacol 106:762–763PubMedGoogle Scholar
  56. 56.
    Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488PubMedCrossRefGoogle Scholar
  57. 57.
    Strehler BL, Totter JR (1952) Firefly luminescence in the study of energy transfer mechanisms. I. Substrate and enzyme determination. Arch Biochem Biophys 40:28–41PubMedCrossRefGoogle Scholar
  58. 58.
    Strehler BL, Totter JR (1954) Determination of ATP and related compounds: firefly luminescence and other methods. Methods Biochem Anal 1:341–356PubMedCrossRefGoogle Scholar
  59. 59.
    Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385PubMedCrossRefGoogle Scholar
  60. 60.
    Surprenant A. (2004) P2X purinergic receptor. In: Encyclopedia of biological chemistry, vol 3. Elsevier, pp 183–187Google Scholar
  61. 61.
    Surprenant A, Buell G, North RA (1995) P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci 18:224–229PubMedCrossRefGoogle Scholar
  62. 62.
    Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, Li Y, Yang J, Dienel G, Zielke HR, Nedergaard M (2005) Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 102:16466–16471PubMedCrossRefGoogle Scholar
  63. 63.
    Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412PubMedCrossRefGoogle Scholar
  64. 64.
    Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141PubMedGoogle Scholar
  65. 65.
    Vial C, Roberts JA, Evans RJ (2004) Molecular properties of ATP-gated P2X receptor ion channels. Trends Pharmacol Sci 25:487–493PubMedCrossRefGoogle Scholar
  66. 66.
    Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640PubMedCrossRefGoogle Scholar
  67. 67.
    Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38:12–18PubMedCrossRefGoogle Scholar
  68. 68.
    White TD (1978) Release of ATP from a synaptosomal preparation by elevated extracellular K+ and by veratridine. J Neurochem 30:329–336PubMedCrossRefGoogle Scholar
  69. 69.
    White TD (1984) Characteristics of neuronal release of ATP. Prog Neuropsychopharmacol Biol Psychiatry 8:487–493PubMedCrossRefGoogle Scholar
  70. 70.
    White T, Potter P, Wonnacott S (1980) Depolarisation-induced release of ATP from cortical synaptosomes is not associated with acetylcholine release. J Neurochem 34:1109–1112PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Faculty of Life SciencesThe University of ManchesterManchesterUK

Personalised recommendations