Pflügers Archiv

, 452:324 | Cite as

Adenosine produced via the CD73/ecto-5′-nucleotidase pathway has no impact on erythropoietin production but is associated with reduced kidney weight

  • Burcin Özüyaman
  • Zhaoping Ding
  • Anja Buchheiser
  • Patrycja Koszalka
  • Norbert Braun
  • Axel Gödecke
  • Ulrich K. M. Decking
  • Herbert Zimmermann
  • Jürgen Schrader
Renal Function, Body Fluids


CD73/ecto-5′-nucleotidase, which catalyzes the conversion of adenosine monophosphate to adenosine, has been implicated in vascular homeostasis. The aim of the present study was to evaluate the role of CD73 in erythropoietin (EPO) production and to determine its influence on basal kidney perfusion using a CD73 knockout mutant recently generated by us. Of all organs investigated, kidneys showed the most prominent CD73 activity, preferentially located in peritubular fibroblasts of the renal cortex and the glomerular mesangium. In the absence of CD73, alkaline phosphatase remained unchanged, but tissue adenosine was reduced under control conditions (by 76%) and during normobaric hypoxia (by 72%). Despite the loss of CD73 activity, EPO mRNA and plasma protein concentrations were not different under basal conditions as well as after normobaric hypoxia (8% O2) and carbon monoxide (0.1% CO) inhalation (both for 4 h). Although there were no differences in blood pressure and urine flow volume, average weight of both kidneys was reduced by 21% in the knockout (wild type 7.17±1.18 mg g−1 body wt, CD73−/− 5.70±1.91 mg g−1 body wt). Measurement of renal plasma flow and glomerular filtration revealed no significant differences when related to respective kidney weights. We conclude that adenosine derived by the extracellular CD73 pathway has no impact on EPO production under basal conditions and after hypoxic challenge but may determine kidney weight.


CD73/ecto-5′-nucleotidase Adenosine Erythropoietin Kidney perfusion and filtration Kidney weight 



We thank Drs. Böge and Zur for urine analysis (Department of Clinical Chemistry, Düsseldorf) and Drs. Osswald and Kloor (Department of Pharmacology, Tübingen) for providing the SAH antibody. We are grateful to Drs. Linden and Figler (University of Virginia, Charlottesville) for having measured kidney weights in A2a receptor knockout mice. The technical assistance of Dr. B. Emde and Daniela Haubs is greatly acknowledged. This study was supported by the DFG (Sonderforschungsbereich 612 TP B6). Burcin Özüyaman is a recipient of a grant by the German Cardiac Society.


  1. 1.
    Bachmann S, Le Hir M, Eckardt KU (1993) Co-localization of erythropoietin mRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 41(3):335–341PubMedGoogle Scholar
  2. 2.
    Bidmon HJ, Emde B, Kowalski T, Schmitt M, Mayer B, Kato K, Asayama K, Witte OW, Zilles K (2001) Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology. J Chem Neuroanat 22(3):167–184CrossRefPubMedGoogle Scholar
  3. 3.
    Braun N, Brendel P, Zimmermann H (1995) Distribution of 5′-nucleotidase in the developing mouse retina. Brain Res Dev Brain Res 88(1):79–86CrossRefPubMedGoogle Scholar
  4. 4.
    Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 18(13):4891–4900PubMedGoogle Scholar
  5. 5.
    Brown R, Ollerstam A, Johansson B, Skott O, Gebre-Medhin S, Fredholm B, Persson AE (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281(5):R1362–R1367PubMedGoogle Scholar
  6. 6.
    Castrop H, Huang Y, Hashimoto S, Mizel D, Hansen P, Theilig F, Bachmann S, Deng C, Briggs J, Schnermann J (2004) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J Clin Invest 114(5):634–642CrossRefPubMedGoogle Scholar
  7. 7.
    Decking UK, Schlieper G, Kroll K, Schrader J (1997) Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res 81(2):154–164PubMedGoogle Scholar
  8. 8.
    Deussen A (2000) Metabolic flux rates of adenosine in the heart. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):351–363CrossRefPubMedGoogle Scholar
  9. 9.
    Deussen A, Bading B, Kelm M, Schrader J (1993) Formation and salvage of adenosine by macrovascular endothelial cells. Am J Physiol 264(3 Pt 2):H692–H700PubMedGoogle Scholar
  10. 10.
    Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of Cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5(9):1010–1017CrossRefPubMedGoogle Scholar
  11. 11.
    Fandrey J (2004) Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol 286(6):R977–88PubMedGoogle Scholar
  12. 12.
    Fisher JW, Brookins J (2001) Adenosine A(2A) and A(2B) receptor activation of erythropoietin production. Am J Physiol Renal Physiol 281(5):F826–F832PubMedGoogle Scholar
  13. 13.
    Gleiter CH, Becker T, Wenzel J (1997) Erythropoietin production in healthy volunteers subjected to controlled hypobaric hypoxia: further evidence against a role for adenosine. Br J Clin Pharmacol 44(2):203–205CrossRefPubMedGoogle Scholar
  14. 14.
    Gleiter CH, Brause M, Delabar U, Zebski H, Eckardt KU (1997) Evidence against a major role of adenosine in oxygen-dependent regulation of erythropoietin in rats. Kidney Int 52(2):338–344PubMedCrossRefGoogle Scholar
  15. 15.
    Hansen PB, Schnermann J (2003) Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am J Physiol Renal Physiol 285(4):F590–F599PubMedGoogle Scholar
  16. 16.
    Inscho EW, Cook AK, Imig JD, Vial C, Evans RJ (2003) Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112(12):1895–1905CrossRefPubMedGoogle Scholar
  17. 17.
    Kaissling B, Spiess S, Rinne B, Le Hir M (1993) Effects of anemia on morphology of rat renal cortex. Am J Physiol 264(4 Pt 2):F608–F617PubMedGoogle Scholar
  18. 18.
    Kloor D, Kurz J, Fuchs S, Faust B, Osswald H (1996) S-Adenosylhomocysteine-hydrolase from bovine kidney: enzymatic and binding properties. Kidney Blood Press Res 19(2):100–108PubMedCrossRefGoogle Scholar
  19. 19.
    Kloor D, Stumvoll W, Schmid H, Kompf J, Mack A, Osswald H (2000) Localization of S-adenosylhomocysteine hydrolase in the rat kidney. J Histochem Cytochem 48(2):211–218PubMedGoogle Scholar
  20. 20.
    Kloor D, Yao K, Delabar U, Osswald H (2000) Simple and sensitive binding assay for measurement of adenosine using reduced S-adenosylhomocysteine hydrolase. Clin Chem 46(4):537–542PubMedGoogle Scholar
  21. 21.
    Kloor D, Delabar U, Mühlbauer B, Luippold G, Osswald H (2002) Tissue levels of S-adenosylhomocysteine in the rat kidney: effects of ischemia and homocysteine. Biochem Pharmacol 63(4):809–815CrossRefPubMedGoogle Scholar
  22. 22.
    Koszalka P, Özüyaman B, Huo Y, Zernecke A, Flögel U, Braun N, Buchheiser A, Decking UK, Smith ML, Sevigny J, Gear A, Weber AA, Molojavyi A, Ding Z, Weber C, Ley K, Zimmermann H, Gödecke A, Schrader J (2004) Targeted disruption of Cd73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ Res 95(8):814–821CrossRefPubMedGoogle Scholar
  23. 23.
    Kvietikova I, Wenger RH, Marti HH, Gassmann M (1997) The hypoxia-inducible factor-1 DNA recognition site is CAMP-responsive. Kidney Int 51(2):564–566PubMedCrossRefGoogle Scholar
  24. 24.
    Le Hir M, Dubach UC (1984) Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles. Pflugers Arch 401(1):58–63CrossRefPubMedGoogle Scholar
  25. 25.
    Le Hir M, Kaissling B (1993) Distribution and regulation of renal ecto-5’-nucleotidase: implications for physiological functions of adenosine. Am J Physiol 264(3 Pt 2):F377–F387PubMedGoogle Scholar
  26. 26.
    Lojda Z, Grossrau R, Schibler TH (1979) Enzyme histochemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. 27.
    Loncar R, Flesche CW, Deussen A (1997) Determinants of the S-adenosylhomocysteine (SAH) technique for the local assessment of cardiac free cytosolic adenosine. J Mol Cell Cardiol 29(5):1289–1305CrossRefPubMedGoogle Scholar
  28. 28.
    Marxer-Meier A, Hegyi I, Loffing J, Kaissling B (1998) Postnatal maturation of renal cortical peritubular fibroblasts in the rat. Anat Embryol (Berl) 197(2):143–153CrossRefGoogle Scholar
  29. 29.
    Nishiyama A, Navar LG (2002) ATP mediates tubuloglomerular feedback. Am J Physiol Regul Integr Comp Physiol 283(1):R273–R275PubMedGoogle Scholar
  30. 30.
    Osswald H, Spielman WS, Knox FG (1978) Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 43(3):465–469PubMedGoogle Scholar
  31. 31.
    Özüyaman B, Gödecke A, Küsters S, Kirchhoff E, Scharf R, Schrader J (2005) Endothelial nitric oxide synthase plays a minor role in inhibition of arterial thrombus formation. Thromb Haemost 93(6):1161–1167PubMedGoogle Scholar
  32. 32.
    Pham CT, MacIvor DM, Hug BA, Heusel JW, Ley TJ (1996) Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci U S A 93(23):13090–13095CrossRefPubMedGoogle Scholar
  33. 33.
    Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5’-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278(15):13468–13479CrossRefPubMedGoogle Scholar
  34. 34.
    Ramos-Salazar A, Baines AD (1986) Role of 5’-nucleotidase in adenosine-mediated renal vasoconstriction during hypoxia. J Pharmacol Exp Ther 236(2):494–499PubMedGoogle Scholar
  35. 35.
    Savic V, Blanchard A, Vlahovic P, Stefanovic V, Ardaillou N, Ardaillou R (1991) Cyclic adenosine monophosphate-stimulating agents induce ecto-5′-nucleotidase activity and inhibit DNA synthesis in rat cultured mesangial cells. Arch Biochem Biophys 290(1):202–206CrossRefPubMedGoogle Scholar
  36. 36.
    Schnermann J, Levine DZ (2003) Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide. Annu Rev Physiol 65:501–529CrossRefPubMedGoogle Scholar
  37. 37.
    Scholz-Pedretti K, Pfeilschifter J, Kaszkin M (2001) Potentiation of cytokine induction of group IIA phospholipase A(2) in rat mesangial cells by ATP and adenosine via the A2A adenosine receptor. Br J Pharmacol 132(1):37–46CrossRefPubMedGoogle Scholar
  38. 38.
    Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79(12A):2–10CrossRefPubMedGoogle Scholar
  39. 39.
    Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, Morote-Garcia JC, Colgan SP (2004) Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 200(11):1395–1405PubMedCrossRefGoogle Scholar
  40. 40.
    Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Volkl H, Warth R (2001) Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12(10):2003–2011PubMedGoogle Scholar
  41. 41.
    Yegutkin GG, Henttinen T, Jalkanen S (2001) Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions. FASEB J 15(1):251–260CrossRefPubMedGoogle Scholar
  42. 42.
    Yegutkin GG, Samburski SS, Jalkanen S (2003) Soluble purine-converting enzymes circulate in human blood and regulate extracellular ATP level via counteracting pyrophosphatase and phosphotransfer reactions. FASEB J 17(10):1328–1330PubMedGoogle Scholar
  43. 43.
    Zimmermann H (1992) 5′-Nucleotidase: molecular structure and functional aspects. Biochem J 285 (Pt 2):345–365PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Burcin Özüyaman
    • 1
  • Zhaoping Ding
    • 1
  • Anja Buchheiser
    • 1
  • Patrycja Koszalka
    • 3
  • Norbert Braun
    • 2
  • Axel Gödecke
    • 1
  • Ulrich K. M. Decking
    • 1
  • Herbert Zimmermann
    • 2
  • Jürgen Schrader
    • 1
  1. 1.Department of Cardiovascular PhysiologyHeinrich-Heine-University DuesseldorfDuesseldorfGermany
  2. 2.AK Neurochemie, Zoologisches InstitutBiozentrum der J.W. Goethe-UniversitätFrankfurt am MainGermany
  3. 3.Department of Medical Biotechnology, Intercollegiate Faculty of BiotechnologyMedical University of GdañskGdanskPoland

Personalised recommendations