Pflügers Archiv

, Volume 451, Issue 5, pp 597–605 | Cite as

Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters

  • Ana M. PajorEmail author
Invited Review


The SLC13 gene family consists of five members in humans, with corresponding orthologs from different vertebrate species. All five genes code for sodium-coupled transporters that are found on the plasma membrane. Two of the transporters, NaS1 and NaS2, carry substrates such as sulfate, selenate and thiosulfate. The other members of the family (NaDC1, NaDC3, and NaCT) are transporters for di- and tri-carboxylates including succinate, citrate and α-ketoglutarate. The SLC13 transporters from vertebrates are electrogenic and they produce inward currents in the presence of sodium and substrate. Substrate-independent leak currents have also been described. Structure–function studies have identified the carboxy terminal half of these proteins as the most important for determining function. Transmembrane helices 9 and 10 may form part of the substrate permeation pathway and participate in conformational changes during the transport cycle. This review also discusses new members of the SLC13 superfamily that exhibit both sodium-dependent and sodium-independent transport mechanisms. The Indy protein from Drosophila, involved in determining lifespan, and the plant vacuolar malate transporter are both sodium-independent dicarboxylate transporters, possibly acting as exchangers. The purpose of this review is to provide an update on new advances in this gene family, particularly on structure–function studies and new members of the family.


Succinate Citrate Dicarboxylates Sulfate Sodium 



Research in the author’s laboratory is funded by the National Institutes of Health, grant DK46269.


  1. 1.
    Artigas P, Gadsby DC (2003) Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc Natl Acad Sci USA 100:501–505CrossRefPubMedGoogle Scholar
  2. 2.
    Aruga S, Pajor AM, Nakamura K, Liu L, Moe OW, Preisig PA, Alpern RJ (2004) OKP cells express the Na+-dicarboxylate cotransporter NaDC-1. Am J Physiol Cell Physiol 287:C64–C72CrossRefPubMedGoogle Scholar
  3. 3.
    Aruga S, Wehrli S, Kaissling B, Moe OW, Preisig PA, Pajor AM, Alpern RJ (2000) Chronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int 58:206–215CrossRefPubMedGoogle Scholar
  4. 4.
    Bai L, Pajor AM (1997) Expression cloning of NaDC-2, an intestinal Na+- or Li+-dependent dicarboxylate transporter. Am J Physiol Gastrointest Liver 273:G267–G274Google Scholar
  5. 5.
    Beck L, Markovich D (2000) The mouse Na+-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D. J Biol Chem 275:11880–11890CrossRefPubMedGoogle Scholar
  6. 6.
    Boehmer C, Embark HM, Bauer A, Palmada M, Yun CH, Weinman EJ, Endou H, Cohen P, Lahme S, Bichler KH, Lang F (2004) Stimulation of renal Na+ dicarboxylate cotransporter 1 by Na+/H+ exchanger regulating factor 2, serum and glucocorticoid inducible kinase isoforms, and protein kinase B. Biochem Biophys Res Commun 313:998–1003CrossRefPubMedGoogle Scholar
  7. 7.
    Burckhardt BC, Drinkuth B, Menzel C, Konig A, Steffgen J, Wright SH, Burckhardt G (2002) The renal Na+-dependent dicarboxylate transporter, NaDC-3, translocates dimethyl- and disulfhydryl-compounds and contributes to renal heavy metal detoxification. J Am Soc Nephrol 13:2628–2638CrossRefPubMedGoogle Scholar
  8. 8.
    Burckhardt BC, Lorenz J, Burckhardt G, Steffgen J (2004) Interactions of benzylpenicillin and non-steroidal anti-inflammatory drugs with the sodium-dependent dicarboxylate transporter NaDC-3. Cell Physiol Biochem 14:415–424CrossRefPubMedGoogle Scholar
  9. 9.
    Burckhardt BC, Lorenz J, Kobbe C, Burckhardt G (2005) Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions. Am J Physiol Renal Fluid Electrolyte Physiol 288:F792–F799CrossRefPubMedGoogle Scholar
  10. 10.
    Burckhardt BC, Steffgen J, Langheit D, Müller GA, Burckhardt G (2000) Potential-dependent steady-state kinetics of a dicarboxylate transporter cloned from winter flounder kidney. Pflügers Arch 441:323–330CrossRefPubMedGoogle Scholar
  11. 11.
    Busch AE, Waldegger S, Herzer T, Biber J, Markovich D, Murer H, Lang F (1994) Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+/SO42− transport protein NaSi-1. J Biol Chem 269:12407–12409PubMedGoogle Scholar
  12. 12.
    Chen X, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA (1999) Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest 103:1159–1168PubMedGoogle Scholar
  13. 13.
    Chen XZ, Shayakul C, Berger UV, Tian W, Hediger MA (1998) Characterization of rat Na+-dicarboxylate cotransporter. J Biol Chem 273:20972–20981CrossRefPubMedGoogle Scholar
  14. 14.
    Dawson PA, Beck L, Markovich D (2003) Hyposulfatemia, growth retardation, reduced fertility, and seizures in mice lacking a functional NaSi-1 gene. Proc Natl Acad Sci USA 100:13704–13709CrossRefPubMedGoogle Scholar
  15. 15.
    Dawson PA, Pirlo KJ, Steane SE, Nguyen KA, Kunzelmann K, Chien YJ, Markovich D (2005) The rat Na+-sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure. Pflügers Arch 450: 262–268 CrossRefPubMedGoogle Scholar
  16. 16.
    Dawson PA, Steane SE, Markovich D (2004) Behavioural abnormalities of the hyposulphataemic Nas1 knock-out mouse. Behav Brain Res 154:457–463CrossRefPubMedGoogle Scholar
  17. 17.
    Dawson PA, Steane SE, Markovich D (2005) Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice. Behav Brain Res 159:15–20CrossRefPubMedGoogle Scholar
  18. 18.
    Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci USA 100:11122–11126CrossRefPubMedGoogle Scholar
  19. 19.
    Fei YJ, Inoue K, Ganapathy V (2003) Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem 278:6136–6144CrossRefPubMedGoogle Scholar
  20. 20.
    Fei YJ, Liu JC, Inoue K, Zhuang L, Miyake K, Miyauchi S, Ganapathy V (2004) Relevance of NAC-2, an Na+-coupled citrate transporter, to life span, body size and fat content in Caenorhabditis elegans. Biochem J 379:191–198CrossRefPubMedGoogle Scholar
  21. 21.
    George RL, Huang W, Naggar HA, Smith SB, Ganapathy V (2004) Transport of N-acetylaspartate via murine sodium/dicarboxylate cotransporter NaDC3 and expression of this transporter and aspartoacylase II in ocular tissues in mouse. Biochim Biophys Acta 1690:63–69PubMedGoogle Scholar
  22. 22.
    Girard JP, Baekkevold ES, Feliu J, Brandtzaeg P, Amalric F (1999) Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules. Proc Natl Acad Sci USA 96:12772–12777CrossRefPubMedGoogle Scholar
  23. 23.
    Griffith DA, Pajor AM (1999) Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1. Biochemistry 38:7524–7531CrossRefPubMedGoogle Scholar
  24. 24.
    Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch 447:653–665CrossRefPubMedGoogle Scholar
  25. 25.
    Hagos Y, Burckhardt BC, Larsen A, Mathys C, Gronow T, Bahn A, Wolff NA, Burckhardt G, Steffgen J (2004) Regulation of sodium-dicarboxylate cotransporter-3 from winter flounder kidney by protein kinase C. Am J Physiol Renal Fluid Electrolyte Physiol 286:F86–F93CrossRefPubMedGoogle Scholar
  26. 26.
    Hall JA, Pajor AM (2005) Functional characterization of a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus. J Bacteriol 187: 5189–5194CrossRefPubMedGoogle Scholar
  27. 27.
    Hamm LL (1990) Renal handling of citrate. Kidney Int 38:728–735PubMedGoogle Scholar
  28. 28.
    Hentschel H, Burckhardt BC, Scholermann B, Kuhne L, Burckhardt G, Steffgen J (2003) Basolateral localization of flounder Na+-dicarboxylate cotransporter (fNaDC-3) in the kidney of Pleuronectes americanus. Pflügers Arch 446:578–584CrossRefPubMedGoogle Scholar
  29. 29.
    Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE (2005) Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol 137:901–910CrossRefPubMedGoogle Scholar
  30. 30.
    Inoue K, Fei YJ, Huang W, Zhuang L, Chen Z, Ganapathy V (2002) Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochem J 367:313–319CrossRefPubMedGoogle Scholar
  31. 31.
    Inoue K, Fei YJ, Zhuang L, Gopal E, Miyauchi S, Ganapathy V (2004) Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Biochem J 378:949–957CrossRefPubMedGoogle Scholar
  32. 32.
    Inoue K, Zhuang L, Ganapathy V (2002) Human Na+-coupled citrate transporter: primary structure, genomic organization, and transport function. Biochem Biophys Res Commun 299:465–471CrossRefPubMedGoogle Scholar
  33. 33.
    Inoue K, Zhuang L, Maddox DM, Smith SB, Ganapathy V (2002) Structure, function and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J Biol Chem 277:39469–39476CrossRefPubMedGoogle Scholar
  34. 34.
    Inoue K, Zhuang L, Maddox DM, Smith SB, Ganapathy V (2003) Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Biochem J 374:21–26CrossRefPubMedGoogle Scholar
  35. 35.
    Kahn ES, Pajor AM (1999) Determinants of substrate and cation affinities in the Na+/dicarboxylate cotransporter. Biochemistry 38:6151–6156CrossRefPubMedGoogle Scholar
  36. 36.
    Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145PubMedGoogle Scholar
  37. 37.
    Kekuda R, Wang H, Huang W, Pajor AM, Leibach FH, Devoe LD, Prasad PD, Ganapathy V (1999) Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem 274:3422–3429CrossRefPubMedGoogle Scholar
  38. 38.
    Knauf F, Rogina B, Jiang Z, Aronson PS, Helfand SL (2002) Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. Proc Natl Acad Sci USA 99:14315–14319CrossRefPubMedGoogle Scholar
  39. 39.
    Kushnir MM, Komaromy-Hiller G, Shushan B, Urry FM, Roberts WL (2001) Analysis of dicarboxylic acids by tandem mass spectrometry. High-throughput quantitative measurement of methylmalonic acid in serum, plasma, and urine. Clin Chem 47:1993–2002Google Scholar
  40. 40.
    Lee A, Beck L, Markovich D (2000) The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization. Genomics 70:354–363CrossRefPubMedGoogle Scholar
  41. 41.
    Li H, Pajor AM (2003) Serines 260 and 288 are involved in sulfate transport by hNaSi-1. J Biol Chem 278:37204–37212CrossRefPubMedGoogle Scholar
  42. 42.
    Li H, Pajor AM (2003) Mutagenesis of the N-glycosylation site of hNaSi-1 reduces transport activity. Am J Physiol Cell Physiol 285:C1188–C1196PubMedGoogle Scholar
  43. 43.
    Lotscher M, Custer M, Quabius ES, Kaissling B, Murer H, Biber J (1996) Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Pflügers Arch 432:373–378CrossRefPubMedGoogle Scholar
  44. 44.
    Markovich D (2000) Molecular regulation and membrane trafficking of mammalian renal phosphate and sulphate transporters. Eur J Cell Biol 79:531–538CrossRefPubMedGoogle Scholar
  45. 45.
    Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533PubMedGoogle Scholar
  46. 46.
    Markovich D, Forgo J, Stange G, Biber J, Murer H (1993) Expression cloning of rat renal Na+/SO42− cotransport. Proc Natl Acad Sci USA 90:8073–8077PubMedGoogle Scholar
  47. 47.
    Markovich D, Murer H (2004) The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflügers Arch 447:594–602CrossRefPubMedGoogle Scholar
  48. 48.
    Markovich D, Regeer RR, Kunzelmann K, Dawson PA (2005) Functional characterization and genomic organization of the human Na+-sulfate cotransporter hNaS2 gene (SLC13A4). Biochem Biophys Res Commun 326:729–734CrossRefPubMedGoogle Scholar
  49. 49.
    Nakada T, Zandi Nejad K, Kurita Y, Kudo H, Broumand V, Kwon CY, Mercado A, Mount DB, Hirose S (2005) Roles of Slc13a1 and Slc26a1 sulfate transporters of eel kidney in sulfate homeostasis and osmoregulation in freshwater. Am J Physiol Regul Integr Comp Physiol 289: R575–R585PubMedGoogle Scholar
  50. 50.
    Oshiro N, Pajor AM (2005) Functional characterization of a high affinity Na+/dicarboxylate cotransporter found in Xenopus laevis kidney and heart. Am J Physiol Cell Physiol (in press)Google Scholar
  51. 51.
    Pajor AM (1995) Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem 270:5779–5785PubMedGoogle Scholar
  52. 52.
    Pajor AM (1996) Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Am J Physiol Renal Fluid Electrolyte Physiol 270:F642–F648Google Scholar
  53. 53.
    Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682CrossRefPubMedGoogle Scholar
  54. 54.
    Pajor AM (2000) Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol 175:1–8CrossRefPubMedGoogle Scholar
  55. 55.
    Pajor AM (2001) Conformationally-sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate cotransporter. J Biol Chem 276:29961–29968CrossRefPubMedGoogle Scholar
  56. 56.
    Pajor AM, Gangula R, Yao N (2001) Cloning and functional characterization of a high-affinity Na+/dicarboxylate cotransporter from mouse brain. Am J Physiol Cell Physiol 280:C1215–C1223PubMedGoogle Scholar
  57. 57.
    Pajor AM, Hirayama BA, Loo DDF (1998) Sodium and lithium interactions with the Na+/dicarboxylate cotransporter. J Biol Chem 273:18923–18929CrossRefPubMedGoogle Scholar
  58. 58.
    Pajor AM, Krajewski SJ, Sun N, Gangula R (1999) Cysteine residues in the Na+/dicarboxylate cotransporter, NaDC-1. Biochem J 344:205–209CrossRefPubMedGoogle Scholar
  59. 59.
    Pajor AM, Randolph KM (2005) Conformationally sensitive residues in extracellular loop 5 of the Na+/dicarboxylate cotransporter. J Biol Chem 280:18728–18735CrossRefPubMedGoogle Scholar
  60. 60.
    Pajor AM, Sun N (2000) Molecular cloning, chromosomal localization and functional characterization of a sodium/dicarboxylate cotransporter from mouse kidney. Am J Physiol Renal Fluid Electrolyte Physiol 279:F482–F490PubMedGoogle Scholar
  61. 61.
    Pajor AM, Sun N (1996) Characterization of the rabbit renal Na+/dicarboxylate cotransporter using anti-fusion protein antibodies. Am J Physiol Cell Physiol 271:C1808–C1816Google Scholar
  62. 62.
    Pajor AM, Sun N (1996) Functional differences between rabbit and human Na+-dicarboxylate cotransporters, NaDC-1 and hNaDC-1. Am J Physiol Renal Fluid Electrolyte Physiol 271:F1093–F1099Google Scholar
  63. 63.
    Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140CrossRefPubMedGoogle Scholar
  64. 64.
    Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, Fukuda K, Igarishi T, Endou H (1998) Cloning, functional characterization and localization of a rat renal Na+-dicarboxylate cotransporter. Am J Physiol Renal Fluid Electrolyte Physiol 275:F298–F305Google Scholar
  65. 65.
    Steffgen J, Burckhardt BC, Langenberg C, Kuhne L, Müller GA, Burckhardt G, Wolff NA (1999) Expression cloning and characterization of a novel sodium-dicarboxylate cotransporter from winter flounder kidney. J Biol Chem 274:20190–20196CrossRefGoogle Scholar
  66. 66.
    Wang H, Fei YJ, Kekuda R, Yang Feng TL, Devoe LD, Leibach FH, Prasad PD, Ganapathy ME (2000) Structure, function and genomic organization of human Na+-dependent high-affinity dicarboxylate transporter. Am J Physiol Cell Physiol 278:C1019–C1030PubMedGoogle Scholar
  67. 67.
    Yao X, Pajor AM (2002) Arginine-349 and aspartate-373 of the Na+/dicarboxylate cotransporter are conformationally sensitive residues. Biochemistry 41:1083–1090CrossRefPubMedGoogle Scholar
  68. 68.
    Yao X, Pajor AM (2000) The transport properties of the human renal Na+/dicarboxylate cotransporter under voltage clamp conditions. Am J Physiol Renal Fluid Electrolyte Physiol 279:F54–F64PubMedGoogle Scholar
  69. 69.
    Zhang FF, Pajor AM (2001) Topology of the Na+/dicarboxylate cotransporter: the N-terminus and hydrophilic loop 4 are located intracellularly. Biochim Biophys Acta 1511:80–89PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Human Biological Chemistry and GeneticsUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations