Pflügers Archiv

, Volume 451, Issue 1, pp 294–303 | Cite as

Effect of hydro-osmotic pressure on polycystin-2 channel function in the human syncytiotrophoblast

  • Nicolás Montalbetti
  • Qiang Li
  • Silvia González-Perrett
  • Jimena Semprine
  • Xing-Zhen Chen
  • Horacio F. Cantiello
Epithelial Transport

Abstract

Polycystin-2 (PC2), one of the gene products whose mutations cause autosomal dominant polycystic kidney disease is a transient receptor potential (TRP)-type (TRPP2) Ca2+-permeable, non-selective cation channel. PC2 is localized in the plasma membrane, the primary cilium, and other cellular organelles of renal epithelial and other cells. Recent studies indicate that PC2 is involved in signal transduction events associated with the transient increase in cytosolic Ca2+. Proof of evidence now hinges on involvement of the PC2 channel in the transduction of environmental signals. PC2 is abundantly expressed in the apical membrane of human syncytiotrophoblast (hST), a highly intricate epithelial tissue, which is essential for the maternal–fetal transfer of solutes, including ions. Physical forces such as hydrostatic (H) and osmotic (Π) pressure play important roles in placenta homeostasis. In this study, we provide new information on PC2 channel regulation in the hST by these environmental factors, and propose a model as to how they may trigger the activation of PC2. Using apical hST vesicles reconstituted in a lipid bilayer system, we found that a change in either H or Π modified PC2 channel activity. This stimulatory effect was no longer observed in hST vesicles pre-treated with the actin cytoskeleton disrupter cytochalasin D. As shown by immunofluorescence analysis PC2 co-localized with actin filaments in the vicinity of the plasma membrane. This co-localization was disrupted by cytochalasin D. Taken together, our findings indicate that physical forces exerted on cells regulate PC2 channel activity by a sensory mechanism involving the actin cytoskeleton.

Keywords

Polycystin-2 TRP channels Non-selective cation channels Ca2+ channels Placenta Osmotic pressure Gel swelling equilibrium 

References

  1. 1.
    Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW (2001) The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol 11:1341–1346Google Scholar
  2. 2.
    Cantiello HF (2003) A tale of two tails: ciliary mechanotransduction in ADPKD. Trends Mol Med 9:234–236Google Scholar
  3. 3.
    Cantiello HF, Montalbetti N, Timpanaro GA, González-Perrett S (2004) Polycystin-2 as a signal transducer. In: Lauf PK, Adragna NC (eds) Cell volume and signaling. Springer, Berlin Heidelberg New York, pp 235–244Google Scholar
  4. 4.
    Cantiello HF, Prat GA (1996) Role of actin filament organization in ion channel activity and cell volume regulation. In: Nelson WJ (ed) Membrane protein-cytoskeleton interactions. Academic, San Diego, pp 373–396Google Scholar
  5. 5.
    Demir R, Kosanke G, Kohnen G, Kertschanska S, Kaufmann P (1997) Classification of human placental stem villi: review of structural and functional aspects. Microsc Res Tech 38:29–41Google Scholar
  6. 6.
    Gao Z, Ruden DM, Lu X (2003) PKD2 cation channel is required for the directional sperm movement and male fertility. Curr Biol 13:2175–2178Google Scholar
  7. 7.
    González-Perrett S, Batelli M, Kim K, Essafi M, Timpanaro G, Montalbetti N, Reisin IL, Arnaout MA, Cantiello HF (2002) Voltage dependence and pH regulation of human polycystin-2 mediated cation channel activity. J Biol Chem 277:24959–24966Google Scholar
  8. 8.
    González-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98:1182–1187Google Scholar
  9. 9.
    Grosman C, Mariano MI, Bozzini JP, Reisin IL (1997) Properties of two multisubstate Cl-channels from human syncytiotrophoblast reconstituted on planar lipid bilayers. J Membr Biol 157:83–95Google Scholar
  10. 10.
    Hodson S, Earlman R (1993) The incorporation of gel pressure into the irreversible thermodynamic equation of fluid flow in order to explain biological tissue swelling. J Theor Biol 163:173–180Google Scholar
  11. 11.
    Imredy J, Yue D (1994) Mechanism of Ca2+−sensitive inactivation of L-type Ca2+ channels. Neuron 12:1301–1318Google Scholar
  12. 12.
    Li Q, Liu Y, Zhao W, Chen XZ (2002) The calcium-binding EF-hand in polycystin-L is not a domain for channel activation and ensuing inactivation. FEBS Lett 516:270–278Google Scholar
  13. 13.
    Li Q, Montalbetti N, Shen PY, Dai XQ, Cheeseman CI, Karpinski E, Wu G, Cantiello HF, Chen XZ (2005) Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet 14:1587–1603Google Scholar
  14. 14.
    MacKnight ADC (1988) Principles of cell volume regulation. Renal Physiol Biochem 3–5:114–141Google Scholar
  15. 15.
    Markowitz GS, Cai Y, Li L, Wu G, Ward LC, Somlo S, D’Agati VD (1999) Polycystin-2 expression is developmentally regulated. Am J Physiol 277:F17–F25Google Scholar
  16. 16.
    Miller C (1986) Ion channel reconstitution. Plenum, New York.Google Scholar
  17. 17.
    Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342Google Scholar
  18. 18.
    Montalbetti N, Li Q, Timpanaro GA, González-Perrett S, Dai XQ, Chen XZ, Cantiello HF (2005) Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast. Role of gelsolin. J Physiol (London) (in press)Google Scholar
  19. 19.
    Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231Google Scholar
  20. 20.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AEH, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet 33:129–137Google Scholar
  21. 21.
    Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. BioEssays 26:844–856Google Scholar
  22. 22.
    Nilius B, Weidema F, Prenen J, Hoenderop JJ, Vennekens R, Hoefs S, Droogmans G, Bindels RM (2003) The carboxyl terminus of the epithelial Ca2+ channel ECaC1 is involved in Ca2+-dependent inactivation. Pflugers Arch 445:584–588Google Scholar
  23. 23.
    Ockleford CD, Wakely J, Badley RA (1981) Morphogenesis of human placental chorionic villi: cytoskeletal, syncytioskeletal and extracellular matrix proteins. Proc R Soc Lond B Biol Sci 212:305–316Google Scholar
  24. 24.
    Ong AC, Ward CJ, Butler RJ, Biddolph S, Bowker C, Torra R, Pei Y, Harris PC (1999) Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol 154:1721–1729Google Scholar
  25. 25.
    Pazour GJ (2004) Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 15:2528–2536Google Scholar
  26. 26.
    Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380Google Scholar
  27. 27.
    Praetorius HA, Frokiaer J, Nielsen S, Spring KR (2003) Bending the primary cilium opens Ca2+-sensitive intermediate-conductance K+ channels in MDCK cells. J Membr Biol 191:193–200Google Scholar
  28. 28.
    Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79Google Scholar
  29. 29.
    Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76Google Scholar
  30. 30.
    Qian Q, Hunter LW, Li M, Marin-Padilla M, Prakash YS, Somlo S, Harris PC, Torres VE, Sieck GC (2003) Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum Mol Genet 12:1875–1880Google Scholar
  31. 31.
    Qian Q, Li M, Cai Y, Ward CJ, Somlo S, Harris PC, Torres VE (2003) Analysis of the polycystins in aortic vascular smooth muscle cells. J Am Soc Nephrol 14:2280–2287Google Scholar
  32. 32.
    Schwartz EA, Leonard ML, Bizios R, Bowser SS (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272:F132–F138Google Scholar
  33. 33.
    Smith CH, Nelson DM, King BF, Donohue TM, Ruzycki S, Kelley LK (1977) Characterization of a microvillous membrane preparation from human placental syncytiotrophoblast: a morphologic, biochemical, and physiologic, study. Am J Obstet Gynecol 128:190–196Google Scholar
  34. 34.
    Strange K (1994) Cellular and molecular physiology of cell volume regulation. CRC, Boca RatonGoogle Scholar
  35. 35.
    Volk T, Schwoerer AP, Thiessen S, Schultz JH, Ehmke H (2003) A polycystin-2-like large conductance cation channel in rat left ventricular myocytes. Cardiovasc Res 58:76–88Google Scholar
  36. 36.
    Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516Google Scholar
  37. 37.
    Ziyadeh FN, Mills JW, Kleinzeller A (1992) Hypotonicity and cell volume regulation in shark rectal gland: role of organic osmolytes and F-actin. Am J Physiol 262:F468–F479Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Nicolás Montalbetti
    • 1
  • Qiang Li
    • 2
  • Silvia González-Perrett
    • 1
  • Jimena Semprine
    • 1
  • Xing-Zhen Chen
    • 2
  • Horacio F. Cantiello
    • 1
    • 3
    • 4
  1. 1.Laboratorio de Canales Iónicos, Departamento de Fisicoquímica y Química AnalíticaFacultad de Farmacia y BioquímicaBuenos AiresArgentina
  2. 2.Department of PhysiologyUniversity of AlbertaEdmontonCanada
  3. 3.Renal UnitMassachusetts General Hospital EastCharlestownUSA
  4. 4.Department of MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations