Pflügers Archiv

, Volume 451, Issue 1, pp 220–227 | Cite as

TRPM2 and TRPM7: channel/enzyme fusions to generate novel intracellular sensors

  • Andrew. M. ScharenbergEmail author
Invited Review


Within the transient receptor potential (Trp) superfamily of ion channels, three members of the Trp (melastatin) (TRPM) subfamily stand out as their amino acid sequences indicate that they possess both ion channel and enzymatic functions. Recently, progress has been made in understanding the relationships between these disparate functionalities for two of these proteins, TRPM2 and TRPM7. TRPM2 appears to have adapted an ADP-ribose hydrolase (ADPRibase) enzyme’s structure as a means of binding ADP-ribose and conveying information about the accumulation of ADP-ribose to the cell via the activation of Na+/Ca2+ entry through the channel domain. While the ADPRibase activity of TRPM2’s enzymatic domain is not required for channel gating, whether a converse relationship exists, wherein channel gating or ion flow modulates the enzymatic domain’s ADPRibase activity, is not known. In contrast, TRPM7 appears to have evolved to place a Mg2+-regulated protein kinase domain in close proximity to a Mg2+-permeant ion channel, such that the kinase domain’s phosphotransferase activity is able respond to local changes in free Mg2+ occurring as the result of the flux of Mg2+ through the channel. As with TRPM2, the activity of TRPM7’s enzymatic domain is not required for gating of its channel domain, although evidence exists that it may have an alternative means of influencing channel gating. These insights into the functional relationships between the channel and enzymatic domains of TRPM2 and TRPM7 suggest informative models for their roles in vertebrate cell physiology.


Kinase Domain Channel Gating Mutant Channel TRPM2 Channel Binding Cleft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH grants GM64091 and GM64316 to A.M.S.


  1. 1.
    Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330CrossRefPubMedGoogle Scholar
  2. 2.
    Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599CrossRefPubMedGoogle Scholar
  3. 3.
    Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol 286:C129–C137CrossRefGoogle Scholar
  4. 4.
    Inamura K, Sano Y, Mochizuki S, Yokoi H, Miyake A, Nozawa K, Kitada C, Matsushime H, Furuichi K (2003) Response to ADP-ribose by activation of TRPM2 in the CRI-G1 insulinoma cell line. J Membr Biol 191:201–207CrossRefPubMedGoogle Scholar
  5. 5.
    Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192CrossRefPubMedGoogle Scholar
  6. 6.
    Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173CrossRefPubMedGoogle Scholar
  7. 7.
    Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148CrossRefPubMedGoogle Scholar
  8. 8.
    Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156CrossRefPubMedGoogle Scholar
  9. 9.
    Perraud AL, Shen B, Dunn CA, Rippe K, Smith MK, Bessman MJ, Stoddard BL, Scharenberg AM (2003) NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem 278:1794–1801CrossRefPubMedGoogle Scholar
  10. 10.
    Shen BW, Perraud AL, Scharenberg A, Stoddard BL (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398CrossRefPubMedGoogle Scholar
  11. 11.
    Kuhn FJ, Luckhoff A (2004) Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J Biol Chem 279:46431–46437CrossRefPubMedGoogle Scholar
  12. 12.
    Ruf A, De Murcia G, Schulz GE (1998) Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 37:3893–3900CrossRefPubMedGoogle Scholar
  13. 13.
    Ferraris D, Ficco RP, Dain D, Ginski M, Lautar S, Lee-Wisdom K, Liang S, Lin Q, Lu MX, Morgan L, Thomas B, Williams LR, Zhang J, Zhou Y, Kalish VJ (2003) Design and synthesis of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Part 4: biological evaluation of imidazobenzodiazepines as potent PARP-1 inhibitors for treatment of ischemic injuries. Bioorg Med Chem 11:3695–3707CrossRefPubMedGoogle Scholar
  14. 14.
    Kinoshita T, Nakanishi I, Warizaya M, Iwashita A, Kido Y, Hattori K, Fujii T (2004) Inhibitor-induced structural change of the active site of human poly(ADP-ribose) polymerase. FEBS Lett 556:43–46CrossRefPubMedGoogle Scholar
  15. 15.
    Rechsteiner M, Hillyard D, Olivera BM (1976) Turnover at nicotinamide adenine dinucleotide in cultures of human cells. J Cell Physiol 88:207–217CrossRefPubMedGoogle Scholar
  16. 16.
    Rechsteiner M, Hillyard D, Olivera BM (1976) Magnitude and significance of NAD turnover in human cell line D98/AH2. Nature 259:695–696PubMedGoogle Scholar
  17. 17.
    Hillyard D, Rechsteiner MC, Olivera BM (1973) Pyridine nucleotide metabolism in mammalian cells in culture. J Cell Physiol 82:165–179CrossRefPubMedGoogle Scholar
  18. 18.
    Lotscher HR, Winterhalter KH, Carafoli E, Richter C (1980) Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. J Biol Chem 255:9325–9330PubMedGoogle Scholar
  19. 19.
    Schweizer M, Schlegel J, Baumgartner D, Richter C (1993) Sensitivity of mitochondrial peptidyl-prolyl cis-trans isomerase, pyridine nucleotide hydrolysis and Ca2+ release to cyclosporine A and related compounds. Biochem Pharmacol 45:641–646CrossRefPubMedGoogle Scholar
  20. 20.
    Ryazanov AG, Pavur KS, Dorovkov MV (1999) Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Curr Biol 9:R43–R45CrossRefGoogle Scholar
  21. 21.
    Cote GP, Luo X, Murphy MB, Egelhoff TT (1997) Mapping of the novel protein kinase catalytic domain of Dictyostelium myosin II heavy chain kinase A. J Biol Chem 272:6846–6849CrossRefPubMedGoogle Scholar
  22. 22.
    Drennan D, Ryazanov AG (2004) Alpha-kinases: analysis of the family and comparison with conventional protein kinases. Prog Biophys Mol Biol 85:1–32CrossRefPubMedGoogle Scholar
  23. 23.
    Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877CrossRefPubMedGoogle Scholar
  24. 24.
    Hermosura MC, Monteilh-Zoller MK, Scharenberg AM, Penner R, Fleig A (2002) Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM. J Physiol (Lond) 539:445–458CrossRefGoogle Scholar
  25. 25.
    Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 119:487–507CrossRefPubMedGoogle Scholar
  26. 26.
    Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT, Cahalan MD, Nairn AC (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/CHAK1. J Biol Chem 280:20793–20803CrossRefPubMedGoogle Scholar
  27. 27.
    Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200CrossRefPubMedGoogle Scholar
  28. 28.
    Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595CrossRefPubMedGoogle Scholar
  29. 29.
    Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047CrossRefPubMedGoogle Scholar
  30. 30.
    Schmitz C, Perraud AL, Fleig A, Scharenberg AM (2004) Dual-function ion channel/protein kinases: novel components of vertebrate magnesium regulatory mechanisms. Pediatr Res 55:734–737CrossRefPubMedGoogle Scholar
  31. 31.
    Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci USA 101:6009–6014CrossRefPubMedGoogle Scholar
  32. 32.
    Kozak JA, Cahalan MD (2003) MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 84:922–927PubMedGoogle Scholar
  33. 33.
    Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG (2004) Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 279:3708–3716CrossRefPubMedGoogle Scholar
  34. 34.
    Dorovkov MV, Ryazanov AG (2004) Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem 279:50643–50646CrossRefPubMedGoogle Scholar
  35. 35.
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41CrossRefPubMedGoogle Scholar
  36. 36.
    Jiang QX, Wang DN, MacKinnon R (2004) Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation. Nature 430:806–810CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Children’s Hospital and Regional Medical Center, Department of PediatricsUniversity of WashingtonSeattle

Personalised recommendations