Pflügers Archiv

, Volume 450, Issue 4, pp 201–208 | Cite as

Functional profiling of human atrial and ventricular gene expression

  • Andreas S. Barth
  • Sylvia Merk
  • Elisabeth Arnoldi
  • Ludwig Zwermann
  • Patrick Kloos
  • Mathias Gebauer
  • Klaus Steinmeyer
  • Markus Bleich
  • Stefan Kääb
  • Arne Pfeufer
  • Peter Überfuhr
  • Martin Dugas
  • Gerhard Steinbeck
  • Michael Nabauer
Cardiovascular System

Abstract

The purpose of our investigation was to identify the transcriptional basis for ultrastructural and functional specialization of human atria and ventricles. Using exploratory microarray analysis (Affymetrix U133A+B), we detected 11,740 transcripts expressed in human heart, representing the most comprehensive report of the human myocardial transcriptome to date. Variation in gene expression between atria and ventricles accounted for the largest differences in this data set, as 3.300 and 2.974 transcripts showed higher expression in atria and ventricles, respectively. Functional classification based on Gene Ontology identified chamber-specific patterns of gene expression and provided molecular insights into the regional specialization of cardiomyocytes, correlating important functional pathways to transcriptional activity: Ventricular myocytes preferentially express genes satisfying contractile and energetic requirements, while atrial myocytes exhibit specific transcriptional activities related to neurohumoral function. In addition, several pro-fibrotic and apoptotic pathways were concentrated in atrial myocardium, substantiating the higher susceptibility of atria to programmed cell death and extracellular matrix remodelling observed in human and experimental animal models of heart failure. Differences in transcriptional profiles of atrial and ventricular myocardium thus provide molecular insights into myocardial cell diversity and distinct region-specific adaptations to physiological and pathophysiological conditions. Moreover, as major functional classes of atrial- and ventricular-specific transcripts were common to human and murine myocardium, an evolutionarily conserved chamber-specific expression pattern in mammalian myocardium is suggested.

Keywords

Functional genomics Myocardium Atrium Ventricle Signal transduction Contraction 

Supplementary material

Fig. S1 A,B

424_2005_1404_ESM_fig1.pdf (173 kb)
(PDF 174 KB)

Fig S2

424_2005_1404_ESM_fig2.pdf (240 kb)
(PDF 241 KB)

Table S1

424_2005_1404_ESM_table1.pdf (182 kb)
(PDF 183 KB)

Table S2

424_2005_1404_ESM_table2.pdf (178 kb)
(PDF 178 KB)

Table S3

424_2005_1404_ESM_table3.xls (2.2 mb)
(Excel 2.2 MB)

Table S4

424_2005_1404_ESM_table4.pdf (177 kb)
(PDF 177 KB)

Table S5

424_2005_1404_ESM_table5.xls (149 kb)
(Excel 149 KB)

Table S6

424_2005_1404_ESM_table6.xls (1.7 mb)
(Excel 1.7 MB)

References

  1. 1.
    Al Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of gene ontology terms with groups of genes. Bioinformatics 20:578–580CrossRefPubMedGoogle Scholar
  2. 2.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefPubMedGoogle Scholar
  3. 3.
    Barrans JD, Ip J, Lam CW, Hwang IL, Dzau VJ, Liew CC (2003) Chromosomal distribution of the human cardiovascular transcriptome. Genomics 81:519–524CrossRefPubMedGoogle Scholar
  4. 4.
    Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kääb S, Hinterseer M, Kartmann H, Kreuzer E, Dugas M, Steinbeck G, Nabauer M (2005) Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature. Circ Res (In Press)Google Scholar
  5. 5.
    Baumer AT, Schumann C, Cremers B, Itter G, Linz W, Jockenhovel F, Böhm M (2002) Gene expression of adrenomedullin in failing myocardium: comparison to atrial natriuretic peptide. J Appl Physiol 92:1058–1063PubMedGoogle Scholar
  6. 6.
    Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG, Seidman CE (1999) Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev Biol 211:100–108CrossRefPubMedGoogle Scholar
  7. 7.
    Bussey KJ, Kane D, Sunshine M, Narasimhan S, Nishizuka S, Reinhold WC, Zeeberg B, Ajay W, Weinstein JN (2003) MatchMiner: a tool for batch navigation among gene and gene product identifiers. Gen Biol 4:R27CrossRefGoogle Scholar
  8. 8.
    Feng JL, Wible B, Li GR, Wang ZG, Nattel S (1997) Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res 80:572–579PubMedGoogle Scholar
  9. 9.
    Forbes MS, Vanniel EE, Purdyramos SI (1990) The atrial myocardial cells of mouse heart—a structural and stereological study. J Struct Biol 103:266–279CrossRefPubMedGoogle Scholar
  10. 10.
    Franco D, Lamers WH, Moorman AFM (1998) Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model. Cardiovasc Res 38:25–53CrossRefPubMedGoogle Scholar
  11. 11.
    Gentleman R, Carey VJ (2003) Visualization and annotation of genomic experiments. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Hanna N, Cardin S, Leung TK, Nattel S (2004) Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res 63:236–244CrossRefPubMedGoogle Scholar
  13. 13.
    Holubarsch C, Schmidt-Schweda S, Knorr A, Duis J, Pieske B, Ruf T, Fasol R, Hasenfuss G, Just H (1994) Functional significance of angiotensin receptors in human myocardium—significant differences between atrial and ventricular myocardium. Eur Heart J 15:88–91PubMedGoogle Scholar
  14. 14.
    Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314Google Scholar
  15. 15.
    Irizarry RA, Gautier CL (2003) The analysis of gene expression data: methods and software. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264CrossRefPubMedGoogle Scholar
  17. 17.
    Jones LR, Field LJ (1993) Residues 2–25 of phospholamban are insufficient to inhibit Ca2+ transport ATPase of cardiac sarcoplasmic-reticulum. J Biol Chem 268:11486–11488PubMedGoogle Scholar
  18. 18.
    Kääb S, Barth AS, Margerie D, Dugas M, Gebauer M, Zwermann L, Merk S, Pfeufer A, Steinmeyer K, Bleich M, Kreuzer E, Steinbeck G, Nabauer M. (2004) Global gene expression in human myocardium-oligonucleotide microarray analysis of regional diversity and transcriptional regulation in heart failure. J Mol Med 82:308–316CrossRefPubMedGoogle Scholar
  19. 19.
    Kaynak B, von Heydebreck A, Mebus S, Seelow D, Hennig S, Vogel J, Sperling HP, Pregla R, Alexi-Meskishvili V, Hetzer R, Lange PE, Vingron M, Lehrach H, Sperling S (2003) Genome-wide array analysis of normal and malformed human hearts. Circulation 107:2467–2474CrossRefPubMedGoogle Scholar
  20. 20.
    Kurabayashi M, Komuro I, Tsuchimochi H, Takaku F, Yazaki Y (1988) Molecular cloning and characterization of human atrial and ventricular myosin alkali light chain cDNA clones. J Biol Chem 263:13930–13936PubMedGoogle Scholar
  21. 21.
    Legato MJ (1973) Ultrastructure of the atria, ventricular, and Purkinje cell, with special reference to the genesis of arrhythmias. Circulation 46:178–189Google Scholar
  22. 22.
    Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol 279:F793–F801Google Scholar
  23. 23.
    Liu GY, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S, Kulp D, Siani-Rose MA (2003) NetAffx: affymetrix probesets and annotations. Nucleic Acids Res 31:82–86CrossRefPubMedGoogle Scholar
  24. 24.
    Minamisawa S, Wang Y, Chen J, Ishikawa Y, Chien KR, Matsuoka R (2003) Atrial chamber-specific expression of sarcolipin is regulated during development and hypertrophic remodeling. J Biol Chem 278:9570–9575CrossRefPubMedGoogle Scholar
  25. 25.
    Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36CrossRefPubMedGoogle Scholar
  26. 26.
    Phillips HM, Murdoch JN, Chaudhry B, Copp AJ, Henderson DJ (2005) Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract. Circ Res 96:292–299CrossRefPubMedGoogle Scholar
  27. 27.
    Piper HM, Isenberg G (1989) Isolated cardiac myocytes. CRC Press, Boca RatonGoogle Scholar
  28. 28.
    Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER (2001) Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25:443–451CrossRefPubMedGoogle Scholar
  29. 29.
    Romppanen H, Marttila M, Magga J, Vuolteenaho O, Kinnunen P, Szokodi I, Ruskoaho H (1997) Adrenomedullin gene expression in the rat heart is stimulated by acute pressure overload: blunted effect in experimental hypertension. Endocrinology 138:2636–2639CrossRefPubMedGoogle Scholar
  30. 30.
    Small EM, Krieg PA (2004) Molecular regulation of cardiac chamber-specific gene expression. Trends Cardiovasc Med 14:13–18CrossRefPubMedGoogle Scholar
  31. 31.
    Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445CrossRefPubMedMathSciNetGoogle Scholar
  32. 32.
    Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208CrossRefPubMedGoogle Scholar
  33. 33.
    Tabibiazar R, Wagner RA, Liao A, Quertermous T (2003) Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circ Res 93:1193–1201CrossRefPubMedGoogle Scholar
  34. 34.
    Tsubakihara M, Williams NK, Keogh A, dos Remedios CG (2004) Comparison of gene expression between left atria and left ventricles from non-diseased humans. Proteomics 4:261–270CrossRefPubMedGoogle Scholar
  35. 35.
    Wang Z, Yue L, White M, Pelletier G, Nattel S (1998) Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 98:2422–2428PubMedGoogle Scholar
  36. 36.
    Zhao Z, Rivkees SA (2004) Rho-associated kinases play a role in endocardial cell differentiation and migration. Dev Biol 275:183–191CrossRefPubMedGoogle Scholar
  37. 37.
    Zhao XS, Gallardo TD, Lin L, Schageman JJ, Shohet RV (2002) Transcriptional mapping and genomic analysis of the cardiac atria and ventricles. Physiol Genomics 12:53–60PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Andreas S. Barth
    • 1
  • Sylvia Merk
    • 2
  • Elisabeth Arnoldi
    • 1
  • Ludwig Zwermann
    • 1
  • Patrick Kloos
    • 1
  • Mathias Gebauer
    • 3
  • Klaus Steinmeyer
    • 3
  • Markus Bleich
    • 3
    • 4
  • Stefan Kääb
    • 1
  • Arne Pfeufer
    • 5
  • Peter Überfuhr
    • 6
  • Martin Dugas
    • 2
  • Gerhard Steinbeck
    • 1
  • Michael Nabauer
    • 1
  1. 1.Department of Medicine I, University Hospital GrosshadernLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of Medical Informatics, Biometrics and Epidemiology (IBE)Ludwig-Maximilians-UniversityMunichGermany
  3. 3.Aventis Pharma Deutschland GmbHGermany
  4. 4.Institute of PhysiologyChristian-Albrechts-UniversityKielGermany
  5. 5.Institute of Human GeneticsTechnical University Munich and GSFNeuherbergGermany
  6. 6.Department of Cardiac Surgery, University Hospital GrosshadernLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations