Pflügers Archiv

, Volume 452, Issue 3, pp 290–299 | Cite as

Stimulation of the epithelial sodium channel (ENaC) by the serum- and glucocorticoid-inducible kinase (Sgk) involves the PY motifs of the channel but is independent of sodium feedback inhibition

  • Robert Rauh
  • Anuwat Dinudom
  • Andrew B. Fotia
  • Marios Paulides
  • Sharad Kumar
  • Christoph Korbmacher
  • David I. CookEmail author
Epithelial Transport


The epithelial sodium channel (ENaC) is the major mediator of sodium transport across the apical membranes of the distal nephron, the distal colon, the respiratory tract and the ducts of exocrine glands. It is subject to feedback inhibition by increased intracellular Na+, a regulatory system wherein the ubiquitin protein ligases, Nedd4 and Nedd4-2, bind to conserved PY motifs in the C-termini of ENaC and inactivate the channel. It has been proposed recently that the kinase Sgk activates the channel as a consequence of phosphorylating Nedd4-2, thus preventing it from inhibiting the channels. This proposal predicts that Sgk should interfere with Na+ feedback regulation of ENaC. We have tested this prediction in Xenopus laevis oocytes and in mouse salivary duct cells and found that in neither system did increased activity of Sgk interrupt Na+ feedback inhibition of ENaC. We found, however, that Sgk stimulation was largely abolished in oocytes expressing ENaC channels with C-terminal truncations or mutated PY motifs. We were also unable to confirm that Sgk directly interacts with Nedd4-2 in vitro. We conclude that the stimulatory effect of Sgk on ENaC requires the presence of the channel’s PY motifs, but it is not due to the interruption of Na+ feedback regulation.


Amiloride Ubiquitin protein ligases Nedd4 Sgk ENaC 



This project was supported by the National Health and Medical Research Council of Australia, the Australian Kidney Foundation, the Deutsche Forschungsgemeinschaft (SFB423) and the Johannes and Frieda Marohn Stiftung. The expert technical assistance of Ralf Rinke is gratefully acknowledged.


  1. 1.
    Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O (1999) Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle’s syndrome. J Clin Invest 103:667–673PubMedCrossRefGoogle Scholar
  2. 2.
    Alvarez de la Rosa D, Canessa CM (2003) Role of SGK in hormonal regulation of epithelial sodium channel in A6 cells. Am J Physiol 284:C404–C414Google Scholar
  3. 3.
    Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274:37834–37839CrossRefPubMedGoogle Scholar
  4. 4.
    Alvarez de la Rosa D, Li H, Canessa CM (2002) Effects of aldosterone on biosynthesis, traffic, and functional expression of epithelial sodium channels in A6 cells. J Gen Physiol 119:427–442CrossRefPubMedGoogle Scholar
  5. 5.
    Asher C, Sinha I, Garty H (2003) Characterization of the interactions between Nedd4-2, ENaC, and sgk-1 using surface plasmon resonance. Biochim Biophys Acta 1612:59–64PubMedCrossRefGoogle Scholar
  6. 6.
    Auberson M, Hoffmann-Pochon N, Vandewalle A, Kellenberger S, Schild L (2003) Epithelial Na+ channel mutants causing Liddle’s syndrome retain ability to respond to aldosterone and vasopressin. Am J Physiol 285:F459–F471Google Scholar
  7. 7.
    De La Rosa DA, Paunescu TG, Els WJ, Helman SI, Canessa CM (2004) Mechanisms of regulation of epithelial sodium channel by SGK1 in A6 cells. J Gen Physiol 124:395–407CrossRefPubMedGoogle Scholar
  8. 8.
    Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O (2001) Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J 20:7052–7059CrossRefPubMedGoogle Scholar
  9. 9.
    Diakov A, Korbmacher C (2004) A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel’s α-subunit. J Biol Chem 279:38134–38142CrossRefPubMedGoogle Scholar
  10. 10.
    Dinudom A, Young JA, Cook DI (1993) Amiloride-sensitive Na+ current in the granular duct cells of mouse mandibular glands. Pflügers Arch 423:164–166CrossRefPubMedGoogle Scholar
  11. 11.
    Dinudom A, Young JA, Cook DI (1993) Na+ and Cl conductances are controlled by cytosolic Cl concentration in the intralobular duct cells of mouse mandibular glands. J Membr Biol 135:289–295PubMedGoogle Scholar
  12. 12.
    Dinudom A, Komwatana P, Young JA, Cook DI (1995) Control of the amiloride-sensitive Na+ current in mouse salivary ducts by intracellular anions is mediated by a G protein. J Physiol (Lond) 487:549–555Google Scholar
  13. 13.
    Dinudom A, Harvey KF, Komwatana P, Young JA, Kumar S, Cook DI (1998) Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proc Natl Acad Sci USA 95:7169–7173CrossRefPubMedGoogle Scholar
  14. 14.
    Dinudom A, Fotia AB, Lefkowitz RJ, Young JA, Kumar S, Cook DI (2004) The kinase Grk2 regulates Nedd4/Nedd4-2-dependent control of epithelial Na+ channels. Proc Natl Acad Sci USA 101:11886–11890CrossRefPubMedGoogle Scholar
  15. 15.
    Duc C, Farman N, Canessa CM, Bonvalet JP, Rossier BC (1994) Cell-specific expression of epithelial sodium channel α, β, and γ subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol 127:1907–1921CrossRefPubMedGoogle Scholar
  16. 16.
    Faletti CJ, Perrotti N, Taylor SI, Blazer-Yost BL (2002) Sgk: an essential convergence point for peptide and steroid hormone regulation of ENaC-mediated Na+ transport. Am J Physiol 282:C494–C500Google Scholar
  17. 17.
    Fotia AB, Dinudom A, Shearwin KE, Koch JP, Korbmacher C, Cook DI, Kumar S (2003) The role of individual Nedd4-2 (KIAA0439) WW domains in binding and regulating epithelial sodium channels. FASEB J 17:70–72PubMedGoogle Scholar
  18. 18.
    Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77:359–396PubMedGoogle Scholar
  19. 19.
    Gruber WD, Knauf H, Frömter E (1973) The action of aldosterone on Na+ and K+ transport in the rat submaxillary main duct. Pflügers Arch 344:33–39CrossRefPubMedGoogle Scholar
  20. 20.
    Harvey KF, Dinudom A, Komwatana P, Jolliffe CN, Day ML, Parasivam G, Cook DI, Kumar S (1999) All three WW domains of murine Nedd4 are involved in the regulation of epithelial sodium channels by intracellular Na+. J Biol Chem 274:12525–12530CrossRefPubMedGoogle Scholar
  21. 21.
    Harvey KF, Dinudom A, Cook DI, Kumar S (2001) The Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J Biol Chem 276:8597–8601CrossRefPubMedGoogle Scholar
  22. 22.
    Henry PC, Kanelis V, O’Brien MC, Kim B, Gautschi I, Forman-Kay J, Schild L, Rotin D (2003) Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel. J Biol Chem 278:20019–20028CrossRefPubMedGoogle Scholar
  23. 23.
    Kaelin Jr WG, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum F, Fuchs CS, Chittenden T, Li Y, Farnham PJ, Blanar MA et al (1992) Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70:351–364CrossRefPubMedGoogle Scholar
  24. 24.
    Kamynina E, Debonneville C, Bens M, Vandewalle A, Staub O (2001) A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J 15:204–214CrossRefPubMedGoogle Scholar
  25. 25.
    Kellenberger S, Gautschi I, Rossier BC, Schild L (1998) Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest 101:2741–2750PubMedCrossRefGoogle Scholar
  26. 26.
    Komwatana P, Dinudom A, Young JA, Cook DI (1996) Cytosolic Na+ controls an epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein. Proc Natl Acad Sci USA 93:8107–8111CrossRefPubMedGoogle Scholar
  27. 27.
    Konstas AA, Mavrelos D, Korbmacher C (2000) Conservation of pH sensitivity in the epithelial sodium channel (ENaC) with Liddle’s syndrome mutation. Pflügers Arch 441:341–350CrossRefPubMedGoogle Scholar
  28. 28.
    Konstas AA, Bielfeld-Ackermann A, Korbmacher C (2001) Sulfonylurea receptors inhibit the epithelial sodium channel (ENaC) by reducing surface expression. Pflügers Arch 442:752–761CrossRefPubMedGoogle Scholar
  29. 29.
    Konstas AA, Shearwin-Whyatt LM, Fotia AB, Degger B, Riccardi D, Cook DI, Korbmacher C, Kumar S (2002) Regulation of the epithelial sodium channel by N4WBP5A, a novel Nedd4/Nedd4-2-interacting protein. J Biol Chem 277:29406–29416CrossRefPubMedGoogle Scholar
  30. 30.
    Kumar S, Harvey KF, Kinoshita M, Copeland NG, Noda M, Jenkins NA (1997) cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene. Genomics 40:435–443CrossRefPubMedGoogle Scholar
  31. 31.
    Lang F, Henke G, Embark H, Waldegger S, Palmada M, Bohmer C, Vallon V (2003) Regulation of channels by the serum and glucocorticoid-inducible kinase—implications for transport, excitability and cell proliferation. Cell Physiol Biochem 13:41–50CrossRefPubMedGoogle Scholar
  32. 32.
    Malik B, Schlanger L, Al-Khalili O, Bao HF, Yue G, Price SR, Mitch WE, Eaton DC (2001) ENaC degradation in A6 cells by the ubiquitin-proteosome proteolytic pathway. J Biol Chem 276:12903–12910CrossRefPubMedGoogle Scholar
  33. 33.
    Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA (1999) Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 18:3024–3033CrossRefPubMedGoogle Scholar
  34. 34.
    Pearce D (2003) SGK1 regulation of epithelial sodium transport. Cell Physiol Biochem 13:13–20CrossRefPubMedGoogle Scholar
  35. 35.
    Rauh R, Paulides M, Diakov A, Korbmacher C (2004) Stimulation of ENaC by SGK1 does not require sodium feedback inhibition. Pflügers Arch 447:S124Google Scholar
  36. 36.
    Rossier BC, Pradervand S, Schild L, Hummler E (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 64:877–897CrossRefPubMedGoogle Scholar
  37. 37.
    Shimkets RA, Lifton RP, Canessa CM (1997) The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 272:25537–25541CrossRefPubMedGoogle Scholar
  38. 38.
    Snyder PM, Olson DR, Thomas BC (2002) Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J Biol Chem 277:5–8CrossRefPubMedGoogle Scholar
  39. 39.
    Snyder PM, Olson DR, Kabra R, Zhou R, Steines JC (2004) cAMP and SGK regulate ENaC through convergent phosphorylation of Nedd4-2. J Biol Chem 279:45753–45758CrossRefPubMedGoogle Scholar
  40. 40.
    Staub O, Dho S, Henry PC, Correa J, Ishikawa T, McGlade J, Rotin D (1996) WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 15:2371–2380PubMedGoogle Scholar
  41. 41.
    Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciecanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquination. EMBO J 16:6325–6336PubMedCrossRefGoogle Scholar
  42. 42.
    Volk T, Konstas AA, Bassalay P, Ehmke H, Korbmacher C (2004) Extracellular Na+ removal attenuates rundown of the epithelial Na+ channel (ENaC) by reducing the rate of channel retrieval. Pflügers Arch 447:884–894CrossRefPubMedGoogle Scholar
  43. 43.
    Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC (2002) Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus Oocytes. J Gen Physiol 120:191–201CrossRefPubMedGoogle Scholar
  44. 44.
    Wang J, Barbry P, Maiyar AC, Rozansky DJ, Bhargava A, Leong M, Firestone GL, Pearce D (2001) SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport. Am J Physiol 280:F303–F313Google Scholar
  45. 45.
    Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22:537–548CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Robert Rauh
    • 4
  • Anuwat Dinudom
    • 1
  • Andrew B. Fotia
    • 2
    • 3
  • Marios Paulides
    • 4
  • Sharad Kumar
    • 2
    • 3
  • Christoph Korbmacher
    • 4
  • David I. Cook
    • 1
    Email author
  1. 1.Department of Physiology (F-13)University of SydneySydneyAustralia
  2. 2.Hanson Institute, IMVSAdelaideAustralia
  3. 3.Department of MedicineUniversity of AdelaideAdelaideAustralia
  4. 4.Institut für Zelluläre und Molekulare PhysiologieUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations