Pflügers Archiv

, Volume 452, Issue 2, pp 164–174 | Cite as

Regulation of a family of inwardly rectifying potassium channels (Kir2) by the m1 muscarinic receptor and the small GTPase Rho

Cellular Neurophysiology

Abstract

Inwardly rectifying potassium channels Kir2.1–Kir2.3 are important regulators of membrane potential and, thus, control cellular excitability. However, little is known about the regulation of these channels. Therefore, we studied the mechanisms mediating the regulation of Kir2.1–Kir2.3 by the G-protein-coupled m1 muscarinic receptor using the whole-cell patch-clamp technique and recombinant expression in the tsA201 mammalian cell line. Stimulation of the m1 muscarinic receptor inhibited all subtypes of inward rectifier tested, Kir2.1–Kir2.3. The inhibition of each channel subtype was reversible and was attenuated by the muscarinic receptor antagonist, atropine. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) mimicked the effects of m1 receptor activation by inhibiting Kir2.1 currents. However, PMA had no effect on Kir2.2 or Kir2.3. Inclusion of 200-μM guanosine 5′-O-(2-thiodiphosphate) (GDPβS) in the patch pipette solution prevented the effects of m1 muscarinic receptor stimulation on all three of the channel subtypes tested, confirming the mediation of the responses by G-proteins. Cotransfection with the activated mutant of the small GTPase Rho reduced current density, while C3 exoenzyme, a selective inhibitor of Rho, attenuated the m1 muscarinic receptor-induced inhibition of Kir2.1–Kir2.3. Also, buffering the intracellular calcium concentration with a high concentration of EGTA abolished the m1 receptor-induced inhibition of Kir2.1–Kir2.3, implicating a role for calcium in these responses. These results indicate that all three of the Kir2 channels are similarly inhibited by m1 muscarinic receptor stimulation through calcium-dependent activation of the small GTPase Rho.

Keywords

Inward rectifier Muscarinic receptor Small GTPase Rho Signal transduction Kir2.1 Kir2.2 Kir2.3 

References

  1. 1.
    Ariano MA, Cepeda C, Calvert CR, Flores-Hernandez J, Hernandez-Echeagaray E, Klapstein GJ, Chandler SH, Aronin N, DiFiglia M, Levine MS (2005) Striatal potassium channel dysfunction in Huntington’s disease transgenic mice. J Neurophysiol 93:2565–2574CrossRefPubMedGoogle Scholar
  2. 2.
    Braun AP, Fedida D, Giles WR (1992) Activation of alpha 1-adrenoceptors modulates the inwardly rectifying potassium currents of mammalian atrial myocytes. Pflugers Arch 421:431–439CrossRefPubMedGoogle Scholar
  3. 3.
    Cachero TG, Morielli AD, Peralta EG (1998) The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell 93:1077–1085CrossRefPubMedGoogle Scholar
  4. 4.
    Chen C, Okayama H (1987) High efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 8:2745–2752Google Scholar
  5. 5.
    Chikumi H, Vazquez-Prado J, Servitja JM, Miyazaki H, Gutkind JS (2002) Potent activation of RhoA by Galpha q and Gq-coupled receptors. J Biol Chem 277:27130–27134CrossRefPubMedGoogle Scholar
  6. 6.
    Chuang H, Jan YN, Jan LY (1997) Regulation of IRK3 inward rectifier K± channel by m1 acetylcholine receptor and intracellular magnesium. Cell 89:1121–1132CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen NA, Sha Q, Makhina EN, Lopatin AN, Linder ME, Snyder SH, Nichols CG (1996) Inhibition of an inward rectifier potassium channel (Kir 2.3) by G-protein βγ subunits. J Biol Chem 271:32301–32305CrossRefPubMedGoogle Scholar
  8. 8.
    Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146CrossRefPubMedGoogle Scholar
  9. 9.
    Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem 279:37271–37281CrossRefPubMedGoogle Scholar
  10. 10.
    Fakler B, Brandle U, Glowatzki E, Zenner H-P, Ruppersberg JP (1994) Kir 2.1 inward rectifier K± channels are regulated independently by protein kinases and ATP hydrolysis. Neuron 13:1413–1420CrossRefPubMedGoogle Scholar
  11. 11.
    Fedida D, Braun AP, Giles WR (1991) Alpha 1-adrenoceptors reduce background K± current in rabbit ventricular myocytes. J Physiol 441:673–684PubMedGoogle Scholar
  12. 12.
    Firth TA, Jones SVP (2001) GTP-binding protein Gq mediates muscarinic receptor-induced inhibition of the inwardly rectifying potassium channel IRK1 (Kir 2.1). Neuropharmacology 40:358–365CrossRefPubMedGoogle Scholar
  13. 13.
    Gilman AG (1987) G-proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649CrossRefPubMedGoogle Scholar
  14. 14.
    Giovannardi S, Forlani G, Balestrini M, Bossi E, Tonini R, Sturani E, Peres A, Zippel R (2002) Modulation of the inward rectifier potassium channel IRK1 by the Ras signaling pathway. J Biol Chem 277:12158–12163CrossRefPubMedGoogle Scholar
  15. 15.
    Henry P, Pearson WL, Nichols CG (1996) Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K± channels expressed in Xenopus oocytes. J Physiol 495:681–688PubMedGoogle Scholar
  16. 16.
    Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1 and Cdc42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170CrossRefPubMedGoogle Scholar
  17. 17.
    Hoang QV, Zhao P, Nakajima S, Nakajima Y (2004) Orexin (hypocretin) effects on constitutively active inward rectifier K± channels in cultured nucleus basalis neurons. J Neurophysiol 92:3183–3191CrossRefPubMedGoogle Scholar
  18. 18.
    Holinstat M, Mehta D, Kozasa T, Minshall RD, Malik AB (2003) Protein kinase C alpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J Biol Chem 278:28793–28798CrossRefPubMedGoogle Scholar
  19. 19.
    Inanobe A, Fujita A, Ito M, Tomoike H, Inageda K, Kurachi Y (2002) Inward rectifier K± channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses. Am J Physiol Cell Physiol 282:C1396–C1403PubMedGoogle Scholar
  20. 20.
    Jones SVP (1996) Modulation of the inwardly rectifying potassium channel IRK1 by the m1 muscarinic receptor. Mol Pharmacol 49:662–667PubMedGoogle Scholar
  21. 21.
    Jones SVP (1997) Dual modulation of an inwardly rectifying potassium conductance. Neuropharmacology 36:209–215CrossRefPubMedGoogle Scholar
  22. 22.
    Jones SVP (2003) Role of small GTPases in modulation of inwardly rectifying potassium channels. Mol Pharmacol 64:987–993CrossRefPubMedGoogle Scholar
  23. 23.
    Kamouchi M, Van Den Bremt K, Eggermont J, Droogmans G, Nilius B (1997) Modulation of inwardly rectifying potassium channels in cultured bovine pulmonary artery endothelial cells. J Physiol 504:545–556CrossRefPubMedGoogle Scholar
  24. 24.
    Kanazirska MV, Vassilev PM, Quinn SJ, Tillotson DL, Williams GH (1992) Single potassium channels in adrenal zona glomerulosa cells. II. Inhibition by angiotensin II. Am J Physiol 263:E760–E765PubMedGoogle Scholar
  25. 25.
    Karle CA, Zitron E, Zhang W, Wendt-Nordahl G, Kathofer S, Thomas D, Gut B, Scholz E, Vahl C-F, Katus HA, Kiehn J (2002) Human cardiac inwardly-rectifying K± channel Kir2.1b is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system. Circulation 106:1493–1499CrossRefPubMedGoogle Scholar
  26. 26.
    Koyano K, Velimirovic BM, Grigg JJ, Nakajima S, Nakajima Y (1993) Two signal transduction mechanisms of substance P-induced depolarisation in locus coeruleus neurons. Eur J Neurosci 5:1189–1197PubMedCrossRefGoogle Scholar
  27. 27.
    Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133CrossRefPubMedGoogle Scholar
  28. 28.
    Morishige K-I, Takahashi N, Jahangir A, Yamada M, Koyama H, Zanelli JS, Kurachi Y (1994) Molecular cloning and functional expression of a novel brain-specific inward rectfier potassium channel. FEBS Lett 346:251–256CrossRefPubMedGoogle Scholar
  29. 29.
    Nilius B, Voets T, Barth H, Aktories K, Kaibuchi K, Droogmans G, Eggermont J (1999) Role of Rho and Rho kinase in the activation of volume regulated anion channels in bovine endothelial cells. J Physiol 516:67–74CrossRefPubMedGoogle Scholar
  30. 30.
    Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496PubMedGoogle Scholar
  31. 31.
    Pan ZZ, Williams JT (1994) Muscarine hyperpolarizes a subpopulation of neurons by activating an M2 muscarinic receptor in rat nucleus raphe magnus in vitro. J Neurosci 14:1332–1338PubMedGoogle Scholar
  32. 32.
    Perillan PR, Chen M, Potts EA, Simard JM (2002) Transforming growth factor-beta 1 regulates Kir2.3 inward rectifier K± channels via phospholipase C and protein kinase C-delta in reactive astrocytes from adult rat brain. J Biol Chem 277:1974–1980CrossRefPubMedGoogle Scholar
  33. 33.
    Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R et al (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519CrossRefPubMedGoogle Scholar
  34. 34.
    Pruss H, Derst C, Lommel R, Veh RW (2005) Differential distribution of individual subunits of strongly inwardly rectifying potassium channels (Kir2 family) in rat brain. Brain Res Mol Brain Res 139:63–79CrossRefPubMedGoogle Scholar
  35. 35.
    Roy ML, Sontheimer H (1995) β-Adrenergic modulation of glial inwardly rectifying potassium channels. J Neurochem 64:1576–1584PubMedCrossRefGoogle Scholar
  36. 36.
    Ruppersberg JP (2000) Intracellular regulation of inward rectifier K± channels. Pflugers Arch 441:1–11CrossRefPubMedGoogle Scholar
  37. 37.
    Shen K-Z, North RA (1992) Substance P opens cation channels and closes potassium channels in rat locus coeruleus neurons. Neuroscience 50:345–353CrossRefPubMedGoogle Scholar
  38. 38.
    Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K± channels: Kir2 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179PubMedCrossRefGoogle Scholar
  39. 39.
    Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammar WJ (1999) Co-localization of the inwardly rectifying potassium ion channel, Kir2.2, and the substance P receptor in single locus coeruleus neurons. Ann N Y Acad Sci 897:429–431PubMedCrossRefGoogle Scholar
  40. 40.
    Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammmar WJ (1999) Characterisation of Kir2 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem Cell Biol 112:457–465CrossRefPubMedGoogle Scholar
  41. 41.
    Storey NM, O’Bryan JP, Armstrong DL (2002) Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Curr Biol 12:27–33CrossRefPubMedGoogle Scholar
  42. 42.
    Takahashi N, Morishige K-I, Jahangir A, Yamada M, Findlay I, Koyama H, Kurachi Y (1994) Molecular cloning and functional expression of cDNA encoding a second class of inward rectifier potassium channels in the mouse brain. J Biol Chem 37:23274–23279Google Scholar
  43. 43.
    Takano K, Stanfield PR, Nakajima S, Nakajima Y (1995) Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neurons. Neuron 14:999–1008CrossRefPubMedGoogle Scholar
  44. 44.
    Takano M, Kuratomi S (2003) Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism. Prog Biophys Mol Biol 81:67–79CrossRefPubMedGoogle Scholar
  45. 45.
    Tang W, Yang X-C (1994) Cloning a novel human inward rectifier potassium channel and its functional expression in Xenopus oocytes. FEBS Lett 348:239–243CrossRefPubMedGoogle Scholar
  46. 46.
    Tang W, Qin CL, Yang X-C (1995) Cloning, localization, and functional expression of a human brain inward rectifier potassium channel (hIRK1). Recept Channels 3:175–183PubMedGoogle Scholar
  47. 47.
    Uchimura N, North RA (1990) Muscarine reduces inwardly rectifying potassium conductance in rat nucleus accumbens neurones. J Physiol 422:369–380PubMedGoogle Scholar
  48. 48.
    Wang H, Yang B, Zhang Y, Han H, Wang J, Shi H, Wang Z (2001) Different subtypes of alpha-1-adrenoceptor modulate different K± currents via different signaling pathways in canine ventricular myocytes. J Biol Chem 276:40811–40816CrossRefPubMedGoogle Scholar
  49. 49.
    Wischmeyer E, Karschin A (1996) Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying potassium channels by direct protein kinase A-mediated phosphorylation. Proc Natl Acad Sci U S A 93:5819–5823CrossRefPubMedGoogle Scholar
  50. 50.
    Wischmeyer E, Doring F, Karschin A (1998) Acute suppression of inwardly rectifying Kir 2.1 channels by direct tyrosine kinase phosphorylation. J Biol Chem 273:34063–34068CrossRefPubMedGoogle Scholar
  51. 51.
    Womble MD, Moises HC (1993) Hyperpolarization-activated currents in neurons of the rat basolateral amygdala. J Neurophysiol 70:2056–2065PubMedGoogle Scholar
  52. 52.
    Yatani A, Irie K, Otani T, Abdellatif M, Wei L (2005) RhoA GTPase regulates l-type Ca2± currents in cardiac myocytes. Am J Physiol Heart Circ Physiol 288:H650–H659CrossRefPubMedGoogle Scholar
  53. 53.
    Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL (2001) The consequences of disrupting cardiac inwardly rectifying K(±) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol 533:697–710CrossRefPubMedGoogle Scholar
  54. 54.
    Zhu G, Qu Z, Cui N, Jiang C (1999) Suppression of Kir2.3 activity by protein kinase C phosphorylation of the channel protein at threonine 53. J Biol Chem 274:11643–11646CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of PsychiatryUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations