Pflügers Archiv

, Volume 452, Issue 1, pp 71–80

Tumor necrosis factor-α and interferon-γ increase PepT1 expression and activity in the human colon carcinoma cell line Caco-2/bbe and in mouse intestine

  • Stephan R. Vavricka
  • Mark W. Musch
  • Mikihiro Fujiya
  • Keri Kles
  • Laura Chang
  • Jyrki J. Eloranta
  • Gerd A. Kullak-Ublick
  • Ken Drabik
  • Didier Merlin
  • Eugene B. Chang
Epithelial Transport

Abstract

A major mechanism for apical peptide absorption by small intestine is via the proton-coupled transporter PepT1. PepT1 is expressed at a high level in proximal small intestine, but it is not expressed in the healthy colon. However, in chronic states of intestinal inflammation, such as in Crohn's disease and ulcerative colitis, PepT1 expression in colonic epithelia is increased, serving as a pathway for entry of bacteria-derived molecules such as muramyl dipeptide (MDP) and fMet-Leu-Phe (fMLP). As little is known of how inflammation induces PepT1, we investigated whether or not inflammatory cytokines and mediators such as interleukins (IL)-1β, IL-2, IL-8, IL-10, tumor necrosis factor-α, (TNF-α) and interferon-γ (IFN-γ ) up-regulate PepT1 activity and expression. Uptake of the PepT1 substrate glycylsarcosine [3H]-Gly-Sar was studied in vitro in the human colon carcinoma cell line Caco2/bbe monolayers as well as in vivo in mice injected with cytokines. TNF-α and IFN-γ increased the activity, and total and apical membrane protein expression of PepT1 protein in a concentration- and time-dependent fashion. No changes in PepT1 mRNA were observed, suggesting post-transcriptional regulation. All three cytokines increased PepT1 protein expression in mouse proximal and distal colon but not in jejunum or ileum. TNF-α and IFN-γ, but not IL-1β, increased Gly-Sar uptake in mouse proximal and distal colon; however, no changes were observed in the small intestine with any cytokine treatment. Whereas neither TNF-α nor IFN-γ increased PepT1 mRNA expression in any segment of the intestine, treatment with IL-1β increased PepT1 mRNA expression in mouse proximal and distal colon and decreased PepT1 mRNA expression in jejunum and ileum. Since PepT1 transports bacteria-derived peptides, the up-regulation of protein expression and activity observed after treatment with TNF-α or IFN-γ may play a role in activating host responses in involved colon.

Keywords

Inflammatory bowel disease Interleukin-1beta fMLP transport Muramyl dipeptide transport 

References

  1. 1.
    Ackermann LW, Denning GM (2004) Nuclear factor-kappaB contributes to interleukin-4- and interferon-dependent polymeric immunoglobulin receptor expression in human intestinal epithelial cells. Immunology 111:75–85CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson P, Phillips K, Stoecklin G, Kedersha N (2004) Post-transcriptional regulation of proinflammatory proteins. J Leukocyte Biol 76:42–47CrossRefPubMedGoogle Scholar
  3. 3.
    Adams RB, Planchon SM, Roche JK (1993) IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding. J Immunol 150:2356–2363PubMedGoogle Scholar
  4. 4.
    Bertelsen LS, Eckermann L, Barrett KE (2004) Prolonged interferon-gamma exposure decreases ion-transporter NKCC1, and Na+–K+–ATPase expression in human intestinal xenografts in vivo. Am J Physiol 286:G157–G165Google Scholar
  5. 5.
    Besancon F, Przewlocki G, Baro I, Hongre AS, Escande D, Edelman A (1994) Interferon-gamma downregulates CFTR gene expression in epithelial cells. Am J Physiol 267:C1398–C1404PubMedGoogle Scholar
  6. 6.
    Bogdan C, Rollinghoff M, Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173:17–26CrossRefPubMedGoogle Scholar
  7. 7.
    Bookstein C, Musch MW, Xie Y, Rao MC, Chang EB (1999) Regulation of intestinal epithelial brush border Na(+)/H(+) exchanger isoforms, NHE2 and NHE3, in CACO2/BBEbbe cells. J Membr Biol 171:87–95CrossRefPubMedGoogle Scholar
  8. 8.
    Besancon F, Przewlocki G, Baro I, Hongre AD, Escande D, Edleman A (1994) Interferon-gamma downregulates CFTR gene expression in epithelial cells. Am J Physiol 267:C1398–C1404PubMedGoogle Scholar
  9. 9.
    Brouillard F, Bouthier M, Leclerc T, Clement A, Baudouin-Legros M, Edelman A (2001) NF-kappa B mediates up-regulation of CFTR gene expression in Calu-3 cells by interleukin-1beta. J Biol Chem 276:9486–9491CrossRefPubMedGoogle Scholar
  10. 10.
    Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171:6164–6172PubMedGoogle Scholar
  11. 11.
    Buyse M, Charrier L, Sitaraman S, Gewirtz A, Merlin D (2003) Interferon-gamma increases PepT1-mediated uptake of di-/tripeptides including the bacterial tripeptide fMLP in polarized intestinal epithelia. Am J Pathol 163:1969–1977PubMedGoogle Scholar
  12. 12.
    Buyse M, Tsocas A, Walker F, Merlin D, Bado A (2002) PepT1-mediated fMLP transport induces intestinal inflammation in vivo. Am J Physiol 283:C1795–C1800Google Scholar
  13. 13.
    Claud E, Savidge T, Walker WA (2003) Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 53:419–425CrossRefPubMedGoogle Scholar
  14. 14.
    Colgan SP, Parkos CA, Matthews JB, D'Andrea L, Awtrey CS, Lichtman AH, Delp-Archer C, Madara JL (1994) Interferon-gamma induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Physiol 267:C402–C410PubMedGoogle Scholar
  15. 15.
    Fei YJ, Kanai Y, Nussberger G, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF, Hediger MA (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563–566CrossRefPubMedGoogle Scholar
  16. 16.
    Fish SM, Proujansky R, Reenstra WW (1999) Synergistic effects of interferon gamma and tumor necrosis factor alpha on T84 cell function. Gut 45:191–198PubMedCrossRefGoogle Scholar
  17. 17.
    Freeman TC, Bentsen BS, Thwaites DT, Simmons NL (1995) H+/di-tripeptide transporter (PepT1) expression in rabbit intestine. Pflugers Arch 430:394–400CrossRefPubMedGoogle Scholar
  18. 18.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philipott DJ, Sansonetti PJ (2003) NOD2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872CrossRefPubMedGoogle Scholar
  19. 19.
    Gitter AH, Bendfeldt K, Schmitz H, Schulzke JD, Bentzel CJ, Fromm M (2000) Epithelial barrier defects in HAT-29/B6 colonic cell monolayers induced by tumor necrosis factor-alpha. Ann NY Acad Sci 915:193–203PubMedCrossRefGoogle Scholar
  20. 20.
    Han HK, Rhie JK, Oh DM, Saito G, Hsu CP, Stewart BH, Amidon GL (1999) CHO/PepT1 cells overexpressing the human peptide transporter (PepT1) as an alternative in vitro model for peptidomimetic drugs. J Pharm Sci 88:347–350CrossRefPubMedGoogle Scholar
  21. 21.
    Hill HD, Straka JG (1988) Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem 170:203–208CrossRefPubMedGoogle Scholar
  22. 22.
    Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124:993–1000CrossRefPubMedGoogle Scholar
  23. 23.
    Hugot JP, Chamillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603CrossRefPubMedGoogle Scholar
  24. 24.
    Jung D, Fantin AC, Scheurer U, Fried M, Kullak-Ublick GA (2004) Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut 53:78–84CrossRefPubMedGoogle Scholar
  25. 25.
    Kwon JH, Keates S, Bassani L, Mayer LF, Keates AC (2002) Colonic epithelial cells are a major site of macrophage inflammatory protein 3alpha (MIP-3alpha) production in normal colon and inflammatory bowel disease. Gut 51:818–826CrossRefPubMedGoogle Scholar
  26. 26.
    Ma D, Wolvers D, Stanisz AM, Bienenstock J (2003) Interleukin-10 and nerve growth factor have reciprocal upregulatory effects on intestinal epithelial cells. Am J Physiol 284:R1323–R1329Google Scholar
  27. 27.
    Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol 286:G367–G 376CrossRefGoogle Scholar
  28. 28.
    Madara JL, Stafford J (1989) Interferon-gamma directly affects barrier function of culture intestinal epithelial monolayers. J Clin Invest 83:724–727PubMedCrossRefGoogle Scholar
  29. 29.
    Madsen KL (2001) Inflammatory bowel disease: lesions from IL-10 gene deficient mouse. Clin Invest Med 24:250–257PubMedGoogle Scholar
  30. 30.
    Marano CW, Lewis SA, Garulacan LA, Soler AP, Mullin JM (1998) Tumor necrosis factor-alpha increases sodium and chloride conductance across the tight junction of CACO-2 BBE, a human intestinal epithelial cell line. J Membr Biol 161:263–274CrossRefPubMedGoogle Scholar
  31. 31.
    Merlin D, Si-Tahar M, Sitaraman SV, Eastburn K, Williams I, Liu X, Hediger MA, Madara JL (2001) Colonic epithelial PepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology 120:1666–1679CrossRefPubMedGoogle Scholar
  32. 32.
    Merlin D, Steel A, Gewirtz AT, Si-Tahar M, Hediger MA, Madara JL (1998) PepT1-mediated epithelial transport of bacterial-derived chemotactic peptides enhances neutrophil–epithelial interaction. J Clin Invest 102:2011–2018PubMedCrossRefGoogle Scholar
  33. 33.
    Musch MW, Clarke LL, Mamah D, Gawenis LR, Zhang Z, Ellsworth W, Shalowitz D, Mittal N, Efthimiou P, Alnadjim Z, Hurst SD, Chang EB, Barrett TA (2002) T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+–ATPase. J Clin Invest 110:1739–1747CrossRefPubMedGoogle Scholar
  34. 34.
    Nakamura H, Yoshimura K, Bajocchi G, Trapnell BC, Pavirani A, Crystal RG (1992) Tumor necrosis factor modulation of expression of the cystic fibrosis transmembrane conductance regulator. FEBS Lett 314:366–370CrossRefPubMedGoogle Scholar
  35. 35.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603–606CrossRefPubMedGoogle Scholar
  36. 36.
    Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, Newman B, Van Oene M, Cescon D, Greenberg G, Griffiths AM, St George-Hyslop PH, Siminovitch KA (2004) Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 36:471–475CrossRefPubMedGoogle Scholar
  37. 37.
    Petersen MM, Mooseker M (1992) Characterization of the eneterocyte-like brush border cytoskeleton of the C2bbe clones of the human intestinal cell line, Caco-2. J Cell Sci 102:581–600PubMedGoogle Scholar
  38. 38.
    Piskurich JF, Youngman KR, Phillips KM, Hempen PM, Blanchard MH, France JA, Kaetzel CS (1997) Transcription regulation of the human polymeric immunoglobulin receptor gene by interferon-gamma. Mol Immunol 34:75–91CrossRefPubMedGoogle Scholar
  39. 39.
    Pizarro TT, Arseneau KO, Bamias G, Cominelli F (2003) Mouse models for the study of Crohn's disease. Trends Mol Med 9:218–222CrossRefPubMedGoogle Scholar
  40. 40.
    Rincheval-Arnold A, Belair L, Cencic A, Djiane J (2002) Up-regulation of polymeric immunoglobulin receptor mRNA in mammary epithelial cells by IFN-gamma. Mol Cell Endocrinol 194:95–105CrossRefPubMedGoogle Scholar
  41. 41.
    Rocha F, Musch MW, Lishanskiy L, Bookstein C, Sugi K, Xie Y, Chang EB (2001) IFN-gamma downregulates expression of Na(+)/H(+) exchangers NHE2 and NHE3 in rat intestine and human Caco-2/bbe cells. Am J Physiol 280:C1224–C1232Google Scholar
  42. 42.
    Rosenthiel P, Fantini M, Brautigam K, Kuhbacher T, Waetzig GH, Seegert D, Schreiber S (2003) TNF-a and IFN-g regulate the expression of the NOD2(CARD15) gene in human intestinal epithelial cells. Gastroenterology 124:1001–1009CrossRefPubMedGoogle Scholar
  43. 43.
    Sands BE, Anderson FH, Bernstein CN, et al (2004) Infliximab maintenance therapy for fistulizing Crohn's disease. N Engl J Med 350:876–885CrossRefPubMedGoogle Scholar
  44. 44.
    Soderholm JD, Streutker C, Yang PC, Paterson C, Singh PK, McKay DM, Sherman PM, Croitoru K, Perdue MH (2004) Increased epithelial uptake of protein antigens in the ileum of Crohn's disease mediated by tumor necrosis factor alpha. Gut 53:1817–1824CrossRefPubMedGoogle Scholar
  45. 45.
    Stanley AJ, Banks RE, Southgate J, Selby PJ (1995) Effect of cell density on the expression of adhesion molecules and modulation by cytokines. Cytometry 21:338–343CrossRefPubMedGoogle Scholar
  46. 46.
    Sugi K, Musch MW, Field M, Chang EB (2001) Inhibition of Na+, K+–ATPase by interferon gamma downregulates intestinal epithelial transport and barrier function. Gastroenterology 120:1393–1403CrossRefPubMedGoogle Scholar
  47. 47.
    Takahashi H, Okai Y, Paxton RJ, Hefta LJ, Shively JE (1993) Differential regulation of carcinoembryonic antigen and biliary glycoprotein by gamma-interferon. Cancer Res 53:1612–1619PubMedGoogle Scholar
  48. 48.
    Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Resent DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts PJ (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group. N Engl J Med 337:1029–1035CrossRefPubMedGoogle Scholar
  49. 49.
    Thwaites DT, Kennedy DJ, Raldua D, Anderson CM, Mendoza ME, Bladen CL, Simmons NL (2002) H/dipeptide absorption across the human intestinal epithelium controlled indirectly via a functional Na/H exchanger. Gastroenterology 122:1322–1333CrossRefPubMedGoogle Scholar
  50. 50.
    Topper JN, Wasserman SM, Anderson KR, Cai J, Falb D, Gimbrone MA Jr (1997) Expression of the bumetanide-sensitive Na–K–Cl cotransporter BSCACO2/BBE is differentially regulated by fluid mechanical and inflammatory cytokine stimuli in vascular endothelium. J Clin Invest 99:2941–2949PubMedCrossRefGoogle Scholar
  51. 51.
    Vavricka SR, Musch MW, Chang JE, Nakagawa Y, Phanvijhitsiri K, Waypa TS, Merlin D, Schneewind O, Chang EB (2004) PepT1 transports muramyl dipeptide, activating NF-kappaB and stimulating IL-8 secretion in human colonic Caco2/bbe cells. Gastroenterology 127:1401–1409CrossRefPubMedGoogle Scholar
  52. 52.
    Walker D, Thwaites DT, Simmons NL, Gilbert HJ, Hirst BH (1998) Substrate up-regulation of the human small intestinal peptide transporter, PepT1. J Physiol 507:697–706CrossRefPubMedGoogle Scholar
  53. 53.
    Wirtz S, Neurath MF (2000) Animal models of intestinal inflammation: new insights into the molecular pathogenesis and immunotherapy of inflammatory bowel disease. Int J Colorectal Dis 15:144–160CrossRefPubMedGoogle Scholar
  54. 54.
    Woo AL, Gildea LA, Tack LM, Miller ML, Spicer Z, Millhorn DE, Finkelman FD, Hassett DJ, Shull GE (2002) In vivo evidence for interferon-gamma-mediated homeostatic mechanisms in small intestine of the NHE3 Na+/H+ exchangers knockout model of congenital diarrhea. J Biol Chem 277:49036–49046CrossRefPubMedGoogle Scholar
  55. 55.
    Yoo D, Lo W, Goodman S, Ali W, Semrad C, Field M (2000) Interferon-gamma downregulates ion transport in murine small intestine cultured in vitro. Am J Physiol 279:G1323–G1332Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Stephan R. Vavricka
    • 1
    • 2
  • Mark W. Musch
    • 1
  • Mikihiro Fujiya
    • 1
  • Keri Kles
    • 1
  • Laura Chang
    • 1
  • Jyrki J. Eloranta
    • 2
  • Gerd A. Kullak-Ublick
    • 2
  • Ken Drabik
    • 1
  • Didier Merlin
    • 3
  • Eugene B. Chang
    • 1
  1. 1.The Martin Boyer LaboratoriesThe University of Chicago IBD Research CenterChicagoUSA
  2. 2.Division of Gastroenterology and HepatologyUniversity Hospital of ZurichZurichSwitzerland
  3. 3.Department of MedicineEmory University School of MedicineAtlantaUSA

Personalised recommendations