Pflügers Archiv

, Volume 452, Issue 1, pp 7–15 | Cite as

VIP receptors control excitability of suprachiasmatic nuclei neurones

  • Pavel Pakhotin
  • Anthony J. Harmar
  • Alexei Verkhratsky
  • Hugh Piggins
Cell and Molecular Physiology

Abstract

The role of vasoactive intestinal polypeptide (VIP) receptors on excitable properties of neurones in slices acutely prepared from the suprachiasmatic nuclei (SCN) of wild-type (WT) and VPAC2-receptor-deficient (Vipr2/) mice was studied under voltage clamp with the use of patch-clamp recording in the whole-cell configuration. The resting membrane potential in Vipr2/ neurones was significantly hyperpolarised as compared to WT cells (−60±7 vs −72±6 mV, p<0.01). Bath application of 100 nM VIP or the VPAC2 receptor agonist RO 25-1553 triggered a slow inward current in a subpopulation of WT SCN neurones; the VIP-induced current was not affected by slice incubation with 25 μM of bicuculline but disappeared completely when the cells were dialysed with CsCl-containing/K+-free solution. Application of VIP or RO 25-1553 to neurones from Vipr2/ mice did not induce currents in all cells tested. Incubation of WT slices with 100 nM VIP or RO 25-1553 resulted in inhibition of fast tetrodotoxin-sensitive sodium currents and delayed rectifier K+ currents in most of the cells tested. This effect was completely absent in cells from Vipr2/ mice. We postulate that VIP receptors control excitability of SCN neurones at the postsynaptic level by direct modulation of membrane potential via inhibition of K+ channels and by tonic inhibition of sodium and potassium voltage-gated currents.

Keywords

VIP receptors SCN Sodium currents Potassium currents Circadian Mouse 

References

  1. 1.
    Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59:449–526PubMedGoogle Scholar
  2. 2.
    Weaver DR (1998) The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 13:100–112CrossRefPubMedGoogle Scholar
  3. 3.
    Ralph MR, Joyner AL, Lehman MN (1993) Culture and transplantation of the mammalian circadian pacemaker. J Biol Rhythms 8(Suppl):S83–S87Google Scholar
  4. 4.
    Herzog ED, Geusz ME, Khalsa SB, Straume M, Block GD (1997) Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res 757:285–290CrossRefPubMedGoogle Scholar
  5. 5.
    Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706CrossRefPubMedGoogle Scholar
  6. 6.
    Albrecht U (2002) Invited review: regulation of mammalian circadian clock genes. J Appl Physiol 92:1348–1355PubMedGoogle Scholar
  7. 7.
    Hastings MH (2000) Circadian clockwork: two loops are better than one. Nat Rev Neurosci 1:143–146CrossRefPubMedGoogle Scholar
  8. 8.
    Piggins HD (2002) Human clock genes. Ann Med 34:394–400CrossRefPubMedGoogle Scholar
  9. 9.
    Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941CrossRefPubMedGoogle Scholar
  10. 10.
    Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309:89–98CrossRefPubMedGoogle Scholar
  11. 11.
    Kalsbeek A, Teclemariam-Mesbah R, Pevet P (1993) Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus). J Comp Neurol 332:293–314CrossRefPubMedGoogle Scholar
  12. 12.
    Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252CrossRefPubMedGoogle Scholar
  13. 13.
    Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229CrossRefPubMedGoogle Scholar
  14. 14.
    Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483PubMedGoogle Scholar
  15. 15.
    Harmar AJ (2003) An essential role for peptidergic signalling in the control of circadian rhythms in the suprachiasmatic nuclei. J Neuroendocrinol 15:335–338CrossRefPubMedGoogle Scholar
  16. 16.
    Kuhlman SJ, Silver R, Le Sauter J, Bult-Ito A, McMahon DG (2003) Phase resetting light pulses induce Per1 and persistent spike activity in a subpopulation of biological clock neurons. J Neurosci 23:1441–1450PubMedGoogle Scholar
  17. 17.
    Piggins HD, Cutler DJ (2003) The roles of vasoactive intestinal polypeptide in the mammalian circadian clock. J Endocrinol 177:7–15CrossRefPubMedGoogle Scholar
  18. 18.
    Cagampang FR, Sheward WJ, Harmar AJ, Piggins HD, Coen CW (1998) Circadian changes in the expression of vasoactive intestinal peptide 2 receptor mRNA in the rat suprachiasmatic nuclei. Brain Res Mol Brain Res 54:108–112CrossRefPubMedGoogle Scholar
  19. 19.
    Kallo I, Kalamatianos T, Wiltshire N, Shen S, Sheward WJ, Harmar AJ, Coen CW (2004) Transgenic approach reveals expression of the VPAC2 receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites. Eur J Neurosci 19:2201–2211CrossRefPubMedGoogle Scholar
  20. 20.
    Shen S, Spratt C, Sheward WJ, Kallo I, West K, Morrison CF, Coen CW, Marston HM, Harmar AJ (2000) Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc Natl Acad Sci U S A 97:11575–11580CrossRefPubMedGoogle Scholar
  21. 21.
    Gourlet P, Vertongen P, Vandermeers A, Vandermeers-Piret MC, Rathe J, De Neef P, Waelbroeck M, Robberecht P (1997) The long-acting vasoactive intestinal polypeptide agonist RO 25-1553 is highly selective of the VIP2 receptor subclass. Peptides 18:403–408CrossRefPubMedGoogle Scholar
  22. 22.
    Cutler DJ, Haraura M, Reed HE, Shen S, Sheward WJ, Morrison CF, Marston HM, Harmar AJ, Piggins HD (2003) The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro. Eur J Neurosci 17:197–204CrossRefPubMedGoogle Scholar
  23. 23.
    Reed HE, Cutler DJ, Brown TM, Brown J, Coen CW, Piggins HD (2002) Effects of vasoactive intestinal polypeptide on neurones of the rat suprachiasmatic nuclei in vitro. J Neuroendocrinol 14:639–646CrossRefPubMedGoogle Scholar
  24. 24.
    Moreno D, Gourlet P, De Neef P, Cnudde J, Waelbroeck M, Robberecht P (2000) Development of selective agonists and antagonists for the human vasoactive intestinal polypeptide VPAC(2) receptor. Peptides 21:1543–1549CrossRefPubMedGoogle Scholar
  25. 25.
    Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, Hu Z, Liu X, Waschek JA (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 285:R939–R949PubMedGoogle Scholar
  26. 26.
    Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109:497–508CrossRefPubMedGoogle Scholar
  27. 27.
    Hughes AT, Fahey B, Cutler DJ, Coogan AN, Piggins HD (2004) Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the VPAC2 receptor. J Neurosci 24:3522–3526CrossRefPubMedGoogle Scholar
  28. 28.
    Piggins HD, Antle MC, Rusak B (1995) Neuropeptides phase shift the mammalian circadian pacemaker. J Neurosci 15:5612–5622PubMedGoogle Scholar
  29. 29.
    Reed HE, Meyer-Spasche A, Cutler DJ, Coen CW, Piggins HD (2001) Vasoactive intestinal polypeptide (VIP) phase-shifts the rat suprachiasmatic nucleus clock in vitro. Eur J Neurosci 13:839–843CrossRefPubMedGoogle Scholar
  30. 30.
    Watanabe K, Vanecek J, Yamaoka S (2000) In vitro entrainment of the circadian rhythm of vasopressin-releasing cells in suprachiasmatic nucleus by vasoactive intestinal polypeptide. Brain Res 877:361–366CrossRefPubMedGoogle Scholar
  31. 31.
    Pakhotin P, Verkhratsky A (2005) Electrical synapses between Bergmann glial cells and Purkinje neurones in rat cerebellar slices. Mol Cell Neurosci 28:79–84CrossRefPubMedGoogle Scholar
  32. 32.
    Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol (Lond) 542:529–536CrossRefGoogle Scholar
  33. 33.
    Phillis JW, Kirkpatrick JR, Said SI (1978) Vasoactive intestinal polypeptide excitation of central neurons. Can J Physiol Pharmacol 56:337–340PubMedGoogle Scholar
  34. 34.
    Dodd J, Kelly JS, Said SI (1979) Excitation of CA1 neurones of the rat hippocampus by the octacosapeptide, vasoactive intestinal polypeptide (VIP) [proceedings]. Br J Pharmacol 66:125PGoogle Scholar
  35. 35.
    Liu XH, Morris R (1999) Vasoactive intestinal polypeptide produces depolarization and facilitation of C-fibre evoked synaptic responses in superficial dorsal horn neurones (laminae I–IV) of the rat lumbar spinal cord in vitro. Neurosci Lett 276:1–4CrossRefPubMedGoogle Scholar
  36. 36.
    Ferron A, Siggins GR, Bloom FE (1985) Vasoactive intestinal polypeptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons. Proc Natl Acad Sci U S A 82:8810–8812PubMedCrossRefGoogle Scholar
  37. 37.
    Sun QQ, Prince DA, Huguenard JR (2003) Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide activate hyperpolarization-activated cationic current and depolarize thalamocortical neurons in vitro. J Neurosci 23:2751–2758PubMedGoogle Scholar
  38. 38.
    Haug T, Storm JF (2000) Protein kinase A mediates the modulation of the slow Ca2+-dependent K+ current, I sAHP, by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons. J Neurophysiol 83:2071–2079PubMedGoogle Scholar
  39. 39.
    Wang YY, Aghajanian GK (1989) Excitation of locus coeruleus neurons by vasoactive intestinal peptide: evidence for a G-protein-mediated inward current. Brain Res 500:107–118CrossRefPubMedGoogle Scholar
  40. 40.
    Wang YY, Aghajanian GK (1990) Excitation of locus coeruleus neurons by vasoactive intestinal peptide: role of a cAMP and protein kinase A. J Neurosci 10:3335–3343PubMedGoogle Scholar
  41. 41.
    Meyer-Spasche A, Piggins HD (2004) Vasoactive intestinal polypeptide phase-advances the rat suprachiasmatic nuclei circadian pacemaker in vitro via protein kinase A and mitogen-activated protein kinase. Neurosci Lett 358:91–94CrossRefPubMedGoogle Scholar
  42. 42.
    Hayashi K, Endoh T, Shibukawa Y, Yamamoto T, Suzuki T (2002) VIP and PACAP inhibit L-, N- and P/Q-type Ca2+ channels of parasympathetic neurons in a voltage independent manner. Bull Tokyo Dent Coll 43:31–39CrossRefPubMedGoogle Scholar
  43. 43.
    Hayashi K, Endoh T, Suzuki T (1999) VIP inhibits high voltage-gated calcium channel currents of hamster submandibular ganglion neurons. Bull Tokyo Dent Coll 40:93–97PubMedCrossRefGoogle Scholar
  44. 44.
    Zhu Y, Yakel JL (1997) Modulation of Ca2+ currents by various G protein-coupled receptors in sympathetic neurons of male rat pelvic ganglia. J Neurophysiol 78:780–789PubMedGoogle Scholar
  45. 45.
    Ehrlich I, Elmslie KS (1995) Neurotransmitters acting via different G proteins inhibit N-type calcium current by an identical mechanism in rat sympathetic neurons. J Neurophysiol 74:2251–2257PubMedGoogle Scholar
  46. 46.
    Itri J, Colwell CS (2003) Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus. J Neurophysiol 90:1589–1597PubMedCrossRefGoogle Scholar
  47. 47.
    Itri J, Michel S, Waschek JA, Colwell CS (2004) Circadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus. J Neurophysiol 92:311–319CrossRefPubMedGoogle Scholar
  48. 48.
    Nitabach MN, Blau J, Holmes TC (2002) Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109:485–495CrossRefPubMedGoogle Scholar
  49. 49.
    de Jeu M, Hermes M, Pennartz C (1998) Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. Neuroreport 9:3725–3729PubMedCrossRefGoogle Scholar
  50. 50.
    Schaap J, Bos NP, de Jeu MT, Geurtsen AM, Meijer JH, Pennartz CM (1999) Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording. Brain Res 815:154–166CrossRefPubMedGoogle Scholar
  51. 51.
    Michel S, Itri J, Colwell CS (2002) Excitatory mechanisms in the suprachiasmatic nucleus: the role of AMPA/KA glutamate receptors. J Neurophysiol 88:817–828PubMedGoogle Scholar
  52. 52.
    Wagner S, Sagiv N, Yarom Y (2001) GABA-induced current and circadian regulation of chloride in neurones of the rat suprachiasmatic nucleus. J Physiol 537:853–869CrossRefPubMedGoogle Scholar
  53. 53.
    De Jeu M, Geurtsen A, Pennartz C (2002) A Ba2+-sensitive K+ current contributes to the resting membrane potential of neurons in rat suprachiasmatic nucleus. J Neurophysiol 88:869–878PubMedGoogle Scholar
  54. 54.
    Pennartz CM, Bierlaagh MA, Geurtsen AM (1997) Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. J Neurophysiol 78:1811–1825PubMedGoogle Scholar
  55. 55.
    Jiang ZG, Yang Y, Liu ZP, Allen CN (1997) Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J Physiol 499 (Pt 1):141–159PubMedGoogle Scholar
  56. 56.
    Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416:286–290CrossRefPubMedGoogle Scholar
  57. 57.
    Teshima K, Kim SH, Allen CN (2003) Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons. Neuroscience 120:65–73CrossRefPubMedGoogle Scholar
  58. 58.
    Cloues RK, Sather WA (2003) Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J Neurosci 23:1593–1604PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Pavel Pakhotin
    • 1
  • Anthony J. Harmar
    • 2
  • Alexei Verkhratsky
    • 1
  • Hugh Piggins
    • 1
  1. 1.Faculty of Life SciencesThe University of ManchesterManchesterUK
  2. 2.Centre for Neuroscience ResearchThe University of EdinburghEdinburghUK

Personalised recommendations