Pflügers Archiv

, Volume 449, Issue 6, pp 564–572 | Cite as

An air-molding technique for fabricating PDMS planar patch-clamp electrodes

  • Kathryn G. Klemic
  • James F. Klemic
  • Fred J. Sigworth
Instruments and Techniques

Abstract

We present a new technique for fabricating planar patch electrodes in the laboratory. Planar electrodes are micromolded using a micron-sized stream of air to define an aperture in the silicone elastomer, polydimethylsiloxane (PDMS). We have previously demonstrated that planar PDMS electrodes make excellent patch electrodes after surface modification. We demonstrate single-channel measurements of the rSlo channel in Xenopus oocytes and whole-cell measurements in CHO and RBL mammalian cell lines, using planar PDMS electrodes.

Keywords

Ion channel Microfabrication Micromolding PDMS 

Notes

Acknowledgements

We thank Yuri Osipchuk (Axon Instruments) for helpful discussions and sharing his idea of using a silver tube to act both as electrical connector and suction port. We also thank Azucena Munden for her help in electrode fabrication, Teresa Giraldez (Yale University) for advice and help with cell culture, and Mark Reed (Yale University) for helpful discussions. This work was supported by NIH grant EB-002020 and a grant from Axon Instruments.

References

  1. 1.
    Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70:567–590CrossRefPubMedGoogle Scholar
  2. 2.
    Brüggemann A, George M, Klau M, Beckler M, Steindl J, Behrends JC, Fertig N (2004) Ion channel drug discovery and research: the automated nano-patch-clamp technology. Curr Drug Discov Technol 1:91–96Google Scholar
  3. 3.
    Diaz L, Meera P, Amigo J, Stefani E, Alvarez O, Toro L, Latorre R (1998) Role of S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J Biol Chem 273:32430–32436CrossRefPubMedGoogle Scholar
  4. 4.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100PubMedGoogle Scholar
  5. 5.
    Hollahan JR, Carlson GL (1970) Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas. J Appl Polym Sci 14:2499CrossRefGoogle Scholar
  6. 6.
    Hillborg H, Gedde UW (1998) Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 39:1991–1998CrossRefGoogle Scholar
  7. 7.
    Kim J, Chaudhury MK, Owen MJ (1999) Hydrophobicity loss and recovery of silicone HV insulation. IEEE Trans Dielect Elect Insul 6:695–702CrossRefGoogle Scholar
  8. 8.
    Kiss L, Bennett PB, Uebele VN, Koblan KS, Kane SA, Neagle B, Schroeder K (2003) High throughput ion-channel pharmacology: planar-array-based voltage clamp. Assay Drug Devel Technol 1:127–135Google Scholar
  9. 9.
    Klemic, KG, Klemic JF, Reed MA, Sigworth FJ (2002) Micromolded PDMS planar electrode allows patch-clamp electrical recordings from cells. Biosens Bioelect 17:597–604CrossRefGoogle Scholar
  10. 10.
    Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices Anal Chem 75:6544–6554Google Scholar
  11. 11.
    Lindau M, Fernandez JM (1986) A patch-clamp study of histamine-secreting cells. J Gen Physiol 88:349–368CrossRefPubMedGoogle Scholar
  12. 12.
    Methfessel C, Witzemann V, Takahashi T, Mishina M, Numa S, Sakmann B (1986) Patch clamp measurements on Xenopus laevis oocytes: current through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch 407:577–588PubMedGoogle Scholar
  13. 13.
     Osipchuk Y, Dromaretcky A, Savtchenko A, Yang I, Mathes C, Chuchward P, Kleinschmidt J, Smith-Maxwell C, Blatz A (2001) Whole-cell recordings from new planar patch clamp electrodes (Abstract). Soc Neurosci 27:606.14Google Scholar
  14. 14.
    Pantoja R, Sigg D, Blunck R, Bezanilla F, Heath JR (2001) Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. Biophys J 81:2389–2394PubMedGoogle Scholar
  15. 15.
     Penner, R (1995) A practical guide to patch clamping. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New York, pp 3–30Google Scholar
  16. 16.
    Schmidt C, Mayer M, Vogel H (2000) A chip-based biosensor for the functional analysis of single ion channels. Angew Chem Int Ed 39:3137–3140CrossRefGoogle Scholar
  17. 17.
    Sigworth FJ, Klemic KG (2002) Patch clamp on a chip. Biophys J 82:2831–2832PubMedGoogle Scholar
  18. 18.
    Stühmer, W (1998) Electrophysiologic recordings from Xenopus oocytes. Methods Enzymol 293:280–300PubMedGoogle Scholar
  19. 19.
    Xia Y, Whitesides GM (1998) Soft Lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  20. 20.
    Xu J, Wang X, Ensign B, Li M, Wu L, Guia A, Xu J (2001) Ion-channel assay technologies: quo vadis? Drug Discov Today 6:1278–1287CrossRefPubMedGoogle Scholar
  21. 21.
    Xu J, Guia A, Rothwarf D, Huang M, Sithiphong K, Ouang J, Tao G, Wang X, Wu L (2003) A benchmark study with SealChip planar patch-clamp technology. Assay Drug Devel Technol 1:675–683CrossRefGoogle Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • Kathryn G. Klemic
    • 1
  • James F. Klemic
    • 2
  • Fred J. Sigworth
    • 1
  1. 1.Department of Cellular and Molecular PhysiologyYale UniversityNew HavenUSA
  2. 2.Departments of Electrical Engineering and Applied PhysicsYale UniversityNew HavenUSA

Personalised recommendations