Pflügers Archiv

, Volume 448, Issue 4, pp 402–410 | Cite as

Segment-specific expression of sodium-phosphate cotransporters NaPi-IIa and -IIc and interacting proteins in mouse renal proximal tubules

  • C. Madjdpour*
  • D. Bacic*
  • B. Kaissling
  • H. Murer
  • J. Biber
Epithelial Transport


Sodium-dependent phosphate cotransport in renal proximal tubules (PTs) is heterogeneous with respect to proximal tubular segmentation (S1 vs. S3) and nephron generation (superficial vs. juxtamedullary). In the present study, S1 and S3 segments of superficial and juxtamedullary nephrons were laser-microdissected and mRNA and protein expression of the Na/Pi-cotransporters NaPi-IIa and NaPi-IIc and the PDZ proteins NHERF-1 and PDZK1 determined. Expression of NaPi-IIa mRNA decreased axially in juxtamedullary nephrons. There was no effect of dietary Pi content on NaPi-lla mRNA expression in any proximal tubular segment. The abundance of the NaPi-IIa cotransporter in the brush-border membrane showed inter- and intranephron heterogeneity and increased in response to a low-Pi diet (5 days), suggesting that up-regulation of NaPi-lla occurs via post-transcriptional mechanisms. In contrast, NaPi-IIc mRNA and protein was up-regulated by the low-Pi diet in all nephron generations analysed. NHERF-1 and PDZK1, at both mRNA and protein levels, were distributed evenly along the PTs and did not change after a low-Pi diet.


Proximal tubule Phosphate reabsorption PDZ protein Laser dissection Immunostaining 



Affinity purified anti-NaPi-IIc antibody was kindly provided by Dr. K. Miyamoto and anti-NHERF-1 antibodies were obtained from Dr. E. Weinmann. This work was supported by the Postgraduate Course in Experimental Medicine and Biology of the Medical Faculty of the University of Zürich, Switzerland, by the Swiss National Foundations (Grant 31-65397.01 to H.M.) and the Stiftung für wissenschaftliche Forschung der Universität Zürich.


  1. 1.
    Biber J (2001) Emerging roles of transporter-PDZ complexes in renal proximal tubular reabsorption. Pflugers Arch 443:3–5PubMedGoogle Scholar
  2. 2.
    Burton MP, Schneider BG, Brown R, Escamilla-Ponce N, Gulley ML (1998) Comparison of histologic stains for use in PCR analysis of microdissected, paraffin-embedded tissues. Biotechniques 24:86–92Google Scholar
  3. 3.
    Collins JF, Gishan FK (1994) Molecular cloning, functional expression, tissue distribution and in situ hybridization of the renal sodium phosphate (Na/Pi) transporter in the control and hypophosphatemic mouse. FASEB J 8:862–868PubMedGoogle Scholar
  4. 4.
    Cornea A, Mungenast A (2002) Comparison of current equipment. Methods Enzymol 356:3–12PubMedGoogle Scholar
  5. 5.
    Curran SJ, McKay A, McLeod HL, Murray GI (2000) Laser capture microscopy. J Clin Pathol Mol Pathol 53:64–68CrossRefGoogle Scholar
  6. 6.
    Custer M, Lötscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na/Pi cotransport in rat kidney: localization by RT-PCR and immunhistochemistry. Am J Physiol 266:F767–F774PubMedGoogle Scholar
  7. 7.
    Custer M, Spindler B, Verrey F, Murer H, Biber J (1997) Identification of a new gene product (Diphor-1) regulated by dietary phosphate. Am J Physiol 273:F801–F806PubMedGoogle Scholar
  8. 8.
    Dawson TP, Gandhi R, Le Hir M, Kaissling B (1989) Ecto-5′-nucleotidase: localization in rat kidney by light microscopic histochemical and immunohistochemical methods. J Histochem Cytochem 37:39–47PubMedGoogle Scholar
  9. 9.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001PubMedGoogle Scholar
  10. 10.
    Gisler SM, Stagljar I, Traebert M, Bacic D, Biber J, Murer H (2001) Interaction of the type II Na/Pi cotransporter with PDZ proteins. J Biol Chem 276:9206–9213PubMedGoogle Scholar
  11. 11.
    Haas JA, Berndt T, Knox FG (1978) Nephron heterogeneity of phosphate reabsorption. Am J Physiol 234:F287–F290PubMedGoogle Scholar
  12. 12.
    Haramati A (1985) Tubular capacity for phosphate reabsorption in superficial and deep nephrons. Am J Physiol 248:F729–F733PubMedGoogle Scholar
  13. 13.
    Hilfiker H, Hartmann CM, Stange G, Murer H (1998) Characterization of the 5′-flanking region of OK cell type II Na-Pi cotransporter gene. Am J Physiol 274:F197–F204PubMedGoogle Scholar
  14. 14.
    Hoag MH, Martel J, Gauthier C, Tenenhouse HS (1999) Effects of Npt2 gene ablation and low-phosphate diet on renal Na+/phosphate cotransport and cotransporter gene expression. J Clin Invest 104:679–686PubMedGoogle Scholar
  15. 15.
    Kido S, Miyamoto K, Mizobuchi H, Taketani Y, Ohkido I, Ogawa N, Kaneko Y, Harashima S, Takeda E (1999). Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem 274:28256–28263CrossRefPubMedGoogle Scholar
  16. 16.
    Kohda Y, Murakami H, Moe OW, Star RA (2000) Analysis of segmental renal gene expression by laser capture microdissection. Kidney Int 57:321–331PubMedGoogle Scholar
  17. 17.
    Levi M, Lötscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer, Biber J (1994) Cellular mechanisms of acute and chronic adaptation of rat renal Pi transporter to alterations in dietary Pi. Am J Physiol 267:F900–F908PubMedGoogle Scholar
  18. 18.
    Lötscher M, Kaissling B, Biber J, Murer H, Levi M (1997) Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content. J Clin Invest 99:1302–1312PubMedGoogle Scholar
  19. 19.
    Lötscher M, Scarpetta Y, Levi M, Halaihel N, Wang H, Zajicek HK, Biber J, Murer H, Kaissling B (1999) Rapid downregulation of rat renal Na/Pi cotransporter in response to parathyroid hormone involves microtubule rearrangement. J Clin Invest 104:483–494PubMedGoogle Scholar
  20. 20.
    Miyamoto K, Itho M (2001) Transcriptional regulation of the NPT2 gene by dietary phosphate. Kidney Int 60:412–415CrossRefGoogle Scholar
  21. 21.
    Morita K, Fujioka A, Haga H, Nii T, Segawa H, Kouda T, Taketani Y, Hisano S, Fukui Y, Miyamoto K, Takeda E (1998) Dietary regulation of renal phosphate transporters in hypophosphatemic mice. J Bone Miner Metab 16:234–240CrossRefGoogle Scholar
  22. 22.
    Murase T, Inagaki H, Eimoto T (2000) Influence of histochemical and immunohistochemical stains on polymerase chain reaction. Mol Pathol 13:147–151Google Scholar
  23. 23.
    Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409PubMedGoogle Scholar
  24. 24.
    Murer H, Hernando N, Forster I, Biber J (2003) Regulation of Na/Pi transporter in the proximal tubule. Annu Rev Physiol 65:531–542CrossRefPubMedGoogle Scholar
  25. 25.
    Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K (2003) Cloning, gene structure and dietary regulation of the type-llc Na/Pi cotransporter in the mouse kidney. Pflugers Arch 446:186–115Google Scholar
  26. 26.
    Pfister MF, Hilfiker H, Forgo J, Lederer E, Biber J, Murer H (1998) Cellular mechanisms involved in the acute adaptation of OK cell Na/Pi -cotransport to high- or low-Pi medium. Pflugers Arch 435:713–719PubMedGoogle Scholar
  27. 27.
    Ritthaler T, Traebert M, Lötscher M, Biber J, Murer H, Kaissling B (1999) Effects of phosphate intake on distribution of type II Na/Pi cotransporter mRNA in rat kidney. Kidney Int 55:976–983CrossRefGoogle Scholar
  28. 28.
    Roy S, Martel J, Tenenhouse HS (1997) Growth hormone normalizes renal 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression but not Na+-phosphate cotransporter (Np2) mRNA in phosphate-deprived Hyp mice. J Bone Miner Res 12:1672–1680PubMedGoogle Scholar
  29. 29.
    Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na-Pi cotransporter. J Biol Chem 277:19665–19672CrossRefPubMedGoogle Scholar
  30. 30.
    Serth J, Kuczyk MA, Paeslack U, Lichtinghagen R, Jonas U (2000) Quantification of DNA extracted after micropreparation of cells from frozen and formalin-fixed tissue sections. Am J Pathol 156:1189–1196PubMedGoogle Scholar
  31. 31.
    Tenenhouse HS, Martel J, Biber J, Murer H (1995) Effect of Pi restriction on renal Na+-Pi cotransporter mRNA and immunoreactive protein in X-linked Hyp mice. Am J Physiol 268:F1062–F1069PubMedGoogle Scholar
  32. 32.
    Tenenhouse HS, Roy S, Martel J, Gauthier C (1998) Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am J Physiol 275:F527–F534PubMedGoogle Scholar
  33. 33.
    Traebert M, Völkl H, Biber J, Murer H, Kaissling B (2000) Luminal and contraluminal action of 1–34 and 3–34 PTH peptides on renal type II Na-Pi cotransporter. Am J Physiol 278:F792–F798Google Scholar
  34. 34.
    Traebert M, Roth J, Biber J, Murer H, Kaissling B (2000) Internalization of proximal tubular type II Na-Pi cotransporter by PTH: immunogold electron microscopy. Am J Physiol 278:F148–F154Google Scholar
  35. 35.
    Walch A, Specht K, Smida J, Aubele M, Zitzelsberger H, Höfler H, Werner M (2001) Tissue microdissection techniques in quantitative genome and gene expression analyses. Histochem Cell Biol 115:269–276PubMedGoogle Scholar
  36. 36.
    Weinman EJ, Boddeti A, Cunningham R, Akom M, Wang F, Wang Y, Liu J, Steplock D, Shenolikar S, Wade JB (2003) NHERF-1 is required for renal adaptation to a low-phosphate diet. Am J Physiol 285:F1225–F1232Google Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • C. Madjdpour*
    • 2
  • D. Bacic*
    • 2
  • B. Kaissling
    • 2
  • H. Murer
    • 1
  • J. Biber
    • 1
  1. 1.Institute of PhysiologyUniversity of ZürichZurichSwitzerland
  2. 2.Institute of AnatomyUniversity of ZurichZurichSwitzerland

Personalised recommendations