Pflügers Archiv

, Volume 447, Issue 5, pp 465–468

The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins

Introduction
  • Matthias A. Hediger
  • Michael F. Romero
  • Ji-Bin Peng
  • Andreas Rolfs
  • Hitomi Takanaga
  • Elspeth A. Bruford
The ABC of Solute Carriers

Abstract

The Human Genome Organisation (HUGO) Nomenclature Committee Database provides a list of transporter families of the solute carrier (SLC) gene series (see http://www.gene.ucl.ac.uk/nomenclature/). Currently, it includes 43 families and 298 transporter genes. This special issue features mini-reviews on each of these SLC families written by the experts in each field. A WEB site has been established (http://www.pharmaconference.org/slctable.asp) that gives the latest updates for the SLC families and their members as well as relevant links to gene databases and reviews in the literature. A list of all currently known SLC families, a discussion of additional SLC families and family members as well as a brief summary of non-SLC transporter genes is included in this introduction.

Keywords

Transporter Carrier Nomenclature SLC Exchanger Cotransporter Uniporter Ion transport Solute transport Coupled transport Channel Pump ABC transporter Transport protein Transporter gene 

References

  1. 1.
    Armstrong CM (2003) Voltage-gated K channels. Sci STKE 188:re10Google Scholar
  2. 2.
    Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y, Tangtrongsup S, Jutabha P, Li Y, Ahmed N, Sakamoto S, Anzai N, Nagamori S, Endou H (2003) Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem 278:43838–43845Google Scholar
  3. 3.
    Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592Google Scholar
  4. 4.
    Chen TY (2003) Coupling gating with ion permeation in ClC channels. Sci STKE 2003:e23Google Scholar
  5. 5.
    Cox DW, Moore SD (2002) Copper transporting P-type ATPases and human disease. J Bioenerg Biomembr 34:333–338CrossRefPubMedGoogle Scholar
  6. 6.
    DeCoursey TE (2003) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83:475–579PubMedGoogle Scholar
  7. 8.
    Dunbar LA, Caplan MJ (2000) The cell biology of ion pumps: sorting and regulation. Eur J Cell Biol 79:557–563PubMedGoogle Scholar
  8. 9.
    Gunther W, Piwon N, Jentsch TJ (2003) The ClC-5 chloride channel knock-out mouse—an animal model for Dent’s disease. Pflugers Arch 445:456–462PubMedGoogle Scholar
  9. 10.
    Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48CrossRefPubMedGoogle Scholar
  10. 11.
    Muller V, Gruber G (2003) ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci 60:474–494PubMedGoogle Scholar
  11. 12.
    O’Regan S, Meunier FM (2003) Selection and characterization of the choline transport mutation suppressor from Torpedo electric lobe, CTL1. Neurochem Res 28:551–555CrossRefPubMedGoogle Scholar
  12. 13.
    O’Regan S, Traiffort E, Ruat M, Cha N, Compaore D, Meunier FM (2000) An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins. Proc Natl Acad Sci USA 97:1835–1840CrossRefPubMedGoogle Scholar
  13. 14.
    Peng JB, Brown EM, Hediger MA (2003) Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond. J Physiol (Lond) 551:729–740Google Scholar
  14. 15.
    Romero MF, Kanai Y, Gunshin H, Hediger MA (1998) Expression cloning using Xenopus laevis oocytes. Methods Enzymol 296:17–52Google Scholar
  15. 16.
    Smith RL, Thompson LJ, Maguire ME (1995) Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J Bacteriol 177:1233–1238PubMedGoogle Scholar
  16. 17.
    Townsend DE, Esenwine AJ, George J III, Bross D, Maguire ME, Smith RL (1995) Cloning of the MgtE Mg2+ transporter from Providencia stuartii and the distribution of MgtE in gram-negative and gram-positive bacteria. J Bacteriol 177:5350–5354PubMedGoogle Scholar
  17. 18.
    Uhl J, Penzel R, Sergi C, Kopitz J, Otto HF, Cantz M (2002) Identification of a CTL4/Neu1 fusion transcript in a sialidosis patient. FEBS Lett 521:19–23CrossRefPubMedGoogle Scholar
  18. 19.
    Wabakken T, Rian E, Kveine M, Aasheim HC (2003) The human solute carrier SLC41A1 belongs to a novel eukaryotic subfamily with homology to prokaryotic MgtE Mg2+ transporters. Biochem Biophys Res Commun 306:718–724CrossRefPubMedGoogle Scholar
  19. 20.
    Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium channel family. Genome Biol 4:207CrossRefPubMedGoogle Scholar
  20. 21.
    Ishida N, Kawakita M (2003) Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch (in press)Google Scholar
  21. 22.
    Hagenbuch B, Meier PJ (2003) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch (in press)Google Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • Matthias A. Hediger
    • 1
  • Michael F. Romero
    • 2
  • Ji-Bin Peng
    • 3
  • Andreas Rolfs
    • 4
  • Hitomi Takanaga
    • 1
  • Elspeth A. Bruford
    • 5
  1. 1.Membrane Biology Program and Renal Division, Brigham and Women’s HospitalHarvard Institutes of MedicineBostonUSA
  2. 2.Department of Physiology and BiophysicsCase Western Reserve University School of MedicineClevelandUSA
  3. 3.Division of Nephrology, Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Harvard Institute of ProteomicsHarvard Medical SchoolCambridgeUSA
  5. 5.HUGO Gene Nomenclature Committee, Department of BiologyUniversity College LondonLondonUK

Personalised recommendations