Pflügers Archiv

, Volume 447, Issue 5, pp 495–509 | Cite as

The SLC4 family of HCO3 transporters

The ABC of Solute Carriers Guest Editor: Matthias A. Hediger

Abstract

The SLC4 family consists of ten genes. All appear to encode integral membrane proteins with very similar hydropathy plots—consistent with the presence of 10–14 transmembrane segments. At least eight SLC4 members encode proteins that transport HCO3 (or a related species, such as CO32−) across the plasma membrane. Functionally, these eight proteins fall into two major groups: three Cl-HCO3 exchangers (AE1–3) and five Na+-coupled HCO3 transporters (NBCe1, NBCe2, NBCn1, NDCBE, NCBE). Two of the Na+-coupled HCO3transporters (NBCe1, NBCe2) are electrogenic; the other three Na+-coupled HCO3 transporters and all three AEs are electroneutral. At least NDCBE transports Cl in addition to Na+ and HCO3. Whether NCBE transports Cl—in addition to Na+ and HCO3—is unsettled. In addition, two other SLC4 members (AE4 and BTR1) do not yet have a firmly established function; on the basis of homology, they fall between the two major groups. A characteristic of many, though not all, SLC4 members is inhibition by 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS). SLC4 gene products play important roles in the carriage of CO2 by erythrocytes, the absorption or secretion of H+ or HCO3 by several epithelia, as well as the regulation of cell volume and intracellular pH.

Keywords

Bicarbonate Boron Carbonate Chloride Cotransporter Exchanger Sodium 

References

  1. 1.
    Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I (1998) Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem 273:17689–17695CrossRefPubMedGoogle Scholar
  2. 2.
    Abuladze N, Song M, Pushkin A, Newman D, Lee I, Nicholas S, Kurtz I (2000) Structural organization of the human NBC1 gene: kNBC1 is transcribed from an alternative promoter in intron 3. Gene 251:109–122CrossRefPubMedGoogle Scholar
  3. 3.
    Allen DG, Xiao XH (2003) Role of the cardiac Na+/H+ exchanger during ischemia and reperfusion. Cardiovasc Res 57:934–941CrossRefPubMedGoogle Scholar
  4. 4.
    Alper SL (2002) Genetic diseases of acid-base transporters. Annu Rev Physiol 64:899–923CrossRefPubMedGoogle Scholar
  5. 5.
    Alper SL, Darman RB, Chernova MN, Dahlberg CG (2002) The AE gene family of Cl/HCO3 exchangers. J Nephrol 15 [Suppl. 5]:S41–S53Google Scholar
  6. 6.
    Alper SL, Kopito RR, Libresco SM, Lodish HF (1988) Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line. J Biol Chem 263:17092–17099PubMedGoogle Scholar
  7. 7.
    Alper SL, Rossmann H, Wilhelm S, Stuart-Tilley AK, Shmukler BE, Seidler U (1999) Expression of AE2 anion exchanger in mouse intestine. Am J Physiol 277:G321–G322PubMedGoogle Scholar
  8. 8.
    Alper SL, Stuart-Tilley A, Simmons CF, Brown D, Drenckhahn S (1994) The fodrin-ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+,K+-ATPase rather than with basolateral anion exchanger AE2. J Clin Invest 93:1430–1438PubMedGoogle Scholar
  9. 9.
    Alper SL, Stuart-Tilley AK, Biemesderfer D, Shmukler B, Brown D (1997) Immunolocalization of AE2 anion exchanger in rat kidney. Am J Physiol 273:F601–F614PubMedGoogle Scholar
  10. 10.
    Amlal H, Burnham CE, Soleimani M (1999) Characterization of the Na+:HCO3 cotransporter isoform NBC-3. Am J Physiol 276:F903–F913PubMedGoogle Scholar
  11. 11.
    Avkiran M (2003) Basic biology and pharmacology of the cardiac sarcolemmal sodium/hydrogen exchanger. J Card Surg 18 [Suppl. 1]:3–12Google Scholar
  12. 12.
    Avkiran M, Marber MS (2002) Na+/H+ exchange inhibitors for cardioprotective therapy: progress, problems and prospects. J Am Coll Cardiol 39:747–753CrossRefPubMedGoogle Scholar
  13. 13.
    Bartel D, Lepke S, Layh-Schmitt G, Legrum B, Passow H (1989) Anion transport in oocytes of Xenopus laevis induced by expression of mouse erythroid band 3 protein-encoding cRNA and of a cRNA derivative obtained by site-directed mutagenesis at the stilbene disulfonate binding site. EMBO J 8:3601–3609PubMedGoogle Scholar
  14. 14.
    Barzilay M, Ship S, Cabantchik ZI (1979) Anion transport in red blood cells. I. Chemical properties of anion recognition sites as revealed by structure-activity relationships of aromatic sulfonic acids. Membr Biochem 2:227–254PubMedGoogle Scholar
  15. 15.
    Bevensee MO, Schmitt BM, Choi I, Romero MF, Boron WF (2000) An electrogenic Na/HCO3 cotransporter (NBC) with a novel C terminus, cloned from rat brain. Am J Physiol 278:C1200–C1211Google Scholar
  16. 16.
    Bok D, Galbraith G, Lopez I, Woodruff M, Nusinowitz S, BeltrandelRio H, Huang WH, Zhao SL, Geske R, Montgomery C, Van Sligtenhorst I, Friddle C, Platt K, Sparks MJ, Pushkin A, Abuladze N, Ishiyama A, Dukkipati R, Liu WX, Kurtz I (2003) Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 34:313–319CrossRefPubMedGoogle Scholar
  17. 17.
    Bok D, Schibler MJ, Pushkin A, Sassani P, Abuladze N, Naser Z, Kurtz I (2001) Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. Am J Physiol 281:F920–F935Google Scholar
  18. 18.
    Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander: basolateral HCO3 transport. J Gen Physiol 81:53–94PubMedGoogle Scholar
  19. 19.
    Boron WF, De Weer P (1976) Active proton transport stimulated by CO2/HCO3 blocked by cyanide. Nature 259:240–241PubMedGoogle Scholar
  20. 20.
    Boron WF, Hogan E, Russell JM (1988) pH-sensitive activation of the intracellular-pH regulation system in squid axons by ATP-γ-S. Nature 332:262–265CrossRefPubMedGoogle Scholar
  21. 21.
    Boron WF, Russell JM (1983) Stoichiometry and ion dependencies of the intracellular-pH-regulating mechanism in squid giant axons. J Gen Physiol 81:373–399PubMedGoogle Scholar
  22. 22.
    Brosius FC III, Alper SL, Garcia AM, Lodish HF (1989) The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem 264:7784–7787PubMedGoogle Scholar
  23. 23.
    Brosius FC III, Pisoni RL, Cao X, Deshmukh G, Yannoukakos D, Stuart-Tilley AK, Haller C, Alper SL (1997) AE anion exchanger mRNA and protein expression in vascular smooth muscle cells, aorta, and renal microvessels. Am J Physiol 273:F1039–F1047PubMedGoogle Scholar
  24. 24.
    Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, Unwin RJ, Wrong O, Tanner MJ (1997) Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 100:1693–1707PubMedGoogle Scholar
  25. 25.
    Bruce LJ, Wrong O, Toye AM, Young MT, Ogle G, Ismail Z, Sinha AK, McMaster P, Hwaihwanje I, Nash GB, Hart S, Lavu E, Palmer R, Othman A, Unwin RJ, Tanner MJA (2000) Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95% band 3 transport in red cells. Biochem J 350:41–51CrossRefPubMedGoogle Scholar
  26. 26.
    Burnham CE, Amlal H, Wang Z, Shull GE, Soleimani M (1997) Cloning and functional expression of a human kidney Na+:HCO3 cotransporter. J Biol Chem 272:19111–19114CrossRefPubMedGoogle Scholar
  27. 27.
    Cabantchik ZI, Greger R (1992) Chemical probes for anion transporters of mammalian cell membranes. Am J Physiol 262:C803–C827PubMedGoogle Scholar
  28. 28.
    Cabantchik ZI, Rothstein A (1972) The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol 10:311–328PubMedGoogle Scholar
  29. 29.
    Chernova MN, Stewart AK, Jiang LW, Friedman DJ, Kunes YZ, Alper SL (2003) Structure-function relationships of AE2 regulation by Cai 2+-sensitive stimulators NH4 + and hypertonicity. Am J Physiol 284:C1235–C1246Google Scholar
  30. 30.
    Choi I, Aalkjaer C, Boulpaep EL, Boron WF (2000) An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 405:571–575CrossRefPubMedGoogle Scholar
  31. 31.
    Choi I, Kobayashi C, Jacovich M, Boron WF (2001) Structure/function analysis of an electroneutral Na/HCO3 cotransporter (NBCn1). FASEB J 15:A446CrossRefGoogle Scholar
  32. 32.
    Choi I, Rojas JD, Kobayashi C, Boron WF (2002) Functional characterization of “NCBE”, an electroneutral Na/HCO3 cotransporter. FASEB J 16:A796CrossRefGoogle Scholar
  33. 33.
    Choi I, Romero MF, Khandoudi N, Bril A, Boron WF (1999) Cloning and characterization of a human electrogenic Na+-HCO3 cotransporter isoform (hhNBC). Am J Physiol 276:C576–C584PubMedGoogle Scholar
  34. 34.
    Cooper GJ, Boron WF (1998) Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Physiol 275:C1481–C1486PubMedGoogle Scholar
  35. 35.
    Davis BA, Choi I, Rojas JD, Virkki LV, Boron WF (2002) Binding of carbonic anhydrase II (CAII) to C termini of the Na-coupled HCO3 transporters NBCe1, NBCn1 and NDCBE1. FASEB J 16:A796CrossRefGoogle Scholar
  36. 36.
    Demuth DR, Showe LC, Ballantine M, Palumbo A, Fraser PJ, Cioe L, Rovera G, Curtis PJ (1986) Cloning and structural characterization of human non-erythroid band 3-like protein. EMBO J 5:1205–1214PubMedGoogle Scholar
  37. 37.
    Dinour D, Knecht A, Serban I, Holtzman EJ (2000) A novel missense mutation in the sodium bicarbonate cotransporter (NBC-1) causes congenital proximal renal tubular acidosis with ocular defects. J Am Soc Nephrol 11:3ACrossRefGoogle Scholar
  38. 38.
    Frommer WB, von Wirén N (2002) Plant biology: ping-pong with boron. Nature 420:282–283CrossRefPubMedGoogle Scholar
  39. 39.
    Fulton CM (2002) Sodium dependent bicarbonate cotransport (NBC). Characterization in rat kidney and testes and development of an electroneutral NBC knockout mouse. University of Aarhus, Aarhus, DenmarkGoogle Scholar
  40. 40.
    Grichtchenko II, Boron WF (2002) Surface-pH measurements in voltage-clamped Xenopus oocytes co-expressing NBCe1 and CAIV: evidence for CO3 2− transport. FASEB J 16:A795Google Scholar
  41. 41.
    Grichtchenko II, Choi I, Zhong X, Bray-Ward P, Russell JM, Boron WF (2001) Cloning, characterization, and chromosomal mapping of a human electroneutral Na+-driven Cl-HCO3 exchanger. J Biol Chem 276:8358–8363CrossRefPubMedGoogle Scholar
  42. 42.
    Gross E, Hawkins K, Abuladze N, Pushkin A, Cotton CU, Hopfer U, Kurtz I (2001) The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell-type dependent. J Physiol (Lond) 531:597–603Google Scholar
  43. 43.
    Gross E, Hawkins K, Pushkin A, Sassani P, Dukkipati R, Abuladze N, Hopfer U, Kurtz I (2001) Phosphorylation of Ser982 in the sodium bicarbonate cotransporter kNBC1 shifts the HCO3 :Na+ stoichiometry from 3:1 to 2:1 in murine proximal tubule cells. J Physiol (Lond) 537:659–665Google Scholar
  44. 44.
    Gross E, Pushkin A, Abuladze N, Fedotoff O, Kurtz I (2002) Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding. J Physiol (Lond) 544:679–685Google Scholar
  45. 45.
    Humphreys BD, Chernova MN, Jiang L, Zhang Y, Alper SL (1997) NH4Cl activates AE2 anion exchanger in Xenopus oocytes at acidic pHi. Am J Physiol 272:C1232–C1240PubMedGoogle Scholar
  46. 46.
    Humphreys BD, Jiang L, Chernova MN, Alper SL (1995) Hypertonic activation of AE2 anion exchanger in Xenopus oocytes via NHE-mediate intracellular alkalinization. Am J Physiol 268:C201–C209PubMedGoogle Scholar
  47. 47.
    Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, Tsukamoto K, Satoh H, Shimadzu M, Tozawa F, Mori T, Shiobara M, Seki G, Endou H (1999) Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet 23:264–266CrossRefPubMedGoogle Scholar
  48. 48.
    Igarashi T, Inatomi J, Sekine T, Takeshima Y, Yoshikawa N, Endou H (2000) A nonsense mutation in the Na+/HCO3 cotransporter gene (SLC4A4) in a patient with permanent isolated proximal renal tubular acidosis and bilateral glaucoma. J Am Soc Nephrol 11:106AGoogle Scholar
  49. 49.
    Ishibashi K, Sasaki S, Marumo F (1998) Molecular cloning of a new sodium bicarbonate cotransporter cDNA from human retina. Biochem Biophys Res Commun 246:535–538CrossRefPubMedGoogle Scholar
  50. 50.
    Jarolim P, Shayakul C, Prabakaran D, Jiang L, Stuart-Tilley AK, Rubin HL, Simova S, Zavadil J, Herrin JT, Somers MJG, Seemanova E, Brouillette J, Brugnara C, Guay-Woodford L, Alper SL (1998) Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/HCO3 exchanger. J Biol Chem 273:6380–6388CrossRefPubMedGoogle Scholar
  51. 51.
    Jennings ML (1976) Proton fluxes associated with erythrocyte-membrane anion-exchange. J Membr Biol 28:187–205PubMedGoogle Scholar
  52. 52.
    Jensen L, Schmitt BM, Brown D, Berger UV, Hediger MA, Boron WF, Breton S (1999) Localization of sodium bicarbonate co-transporter (NBC) protein and mRNA in rat epididymis. Biol Reprod 60:573–579PubMedGoogle Scholar
  53. 53.
    Karet FE, Gainza FJ, Gyory AZ, Unwin RJ, Wrong O, Tanner MJ, Nayir A, Alpay H, Santos F, Hulton SA, Bakkaloglu A, Ozen S, Cunningham MJ, di Pietro A, Walker WG, Lifton RP (1998) Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci USA 95:6337–6342CrossRefPubMedGoogle Scholar
  54. 54.
    Khandoudi N, Albadine J, Robert P, Krief S, Berrebi-Bertrand I, Martin X, Bevensee MO, Boron WF, Bril A (2001) Inhibition of the cardiac electrogenic sodium bicarbonate cotransporter reduces ischemic injury. Cardiovasc Res 52:387–396Google Scholar
  55. 55.
    Ko SB, Luo X, Hager H, Rojek A, Choi JY, Licht C, Suzuki M, Muallem S, Nielsen S, Ishibashi K (2002) AE4 is a DIDS-sensitive Cl-/HCO3 exchanger in the basolateral membrane of the renal CCD and the SMG duct. Am J Physiol 283:C1206–C1218Google Scholar
  56. 56.
    Ko SB, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S, Muallem S (2002) A molecular mechanism for aberrant CFTR-dependent HCO3 transport in cystic fibrosis. EMBO J 21:5662–5672CrossRefPubMedGoogle Scholar
  57. 57.
    Kobayashi S, Morgans CW, Casey JR, Kopito RR (1994) AE3 anion exchanger isoforms in the vertebrate retina: developmental regulation and differential expression in neurons and glia. J Neurosci 14:6266–6279PubMedGoogle Scholar
  58. 58.
    Kopito RR, Lee BS, Simmons DM, Lindsey AE, Morgans CW, Schneider K (1989) Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 59:927–937PubMedGoogle Scholar
  59. 59.
    Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316:234–238PubMedGoogle Scholar
  60. 60.
    Kudrycki KE, Newman PR, Shull GE (1990) cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the Band 3 Cl-HCO3 exchanger. J Biol Chem 265:462–471PubMedGoogle Scholar
  61. 61.
    Landolt-Marticorena C, Casey JR, Reithmeier RA (1995) Transmembrane helix-helix interactions and accessibility of H2DIDS on labelled band 3, the erythrocyte anion exchange protein. Mol Membr Biol 12:173–182PubMedGoogle Scholar
  62. 62.
    Linn SC, Kudrycki KE, Shull GE (1992) The predicted translation product of a cardiac AE3 mRNA contains an N terminus distinct from that of the brain AE3 Cl-/HCO3 exchanger. Cloning of a cardiac AE3 cDNA, organization of the AE3 gene, and identification of an alternative transcription initiation site. J Biol Chem 267:7927–7935PubMedGoogle Scholar
  63. 63.
    Lu J, Virkki LV, Choi I, Boulpaep EL, Boron WF (2003) The effect of mutations of K559 and K562, within the KMIK motif of TM5, on the DIDS sensitivity of the electrogenic Na/HCO3 cotransporter from human kidney (hNBCe1-A). FASEB J 17:A1221Google Scholar
  64. 64.
    Marino CR, Jeanes V, Boron WF, Schmitt BM (1999) Expression and distribution of the Na+-HCO3 cotransporter in human pancreas. Am J Physiol 277:G487–G494PubMedGoogle Scholar
  65. 65.
    Muller-Berger S, Ducoudret O, Diakov A, Frömter E (2001) The renal Na-HCO3 cotransporter expressed in Xenopus laevis oocytes: change in stoichiometry in response to elevation of cytosolic Ca2+ concentration. Pflugers Arch 442:718–728CrossRefPubMedGoogle Scholar
  66. 66.
    Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274:C543–C548PubMedGoogle Scholar
  67. 67.
    Okubo K, Kang D, Hamasaki N, Jennings ML (1994) Red blood cell band 3. Lysine 539 and lysine 851 react with the same H2DIDS (4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonic acid) molecule. J Biol Chem 269:1918–1926PubMedGoogle Scholar
  68. 68.
    Papageorgiou P, Shmukler BE, Stuart-Tilley AK, Jiang L, Alper SL (2001) AE anion exchangers in atrial tumor cells. Am J Physiol 280:H937–H945Google Scholar
  69. 69.
    Park M, Ko SB, Choi JY, Muallem G, Thomas PJ, Pushkin A, Lee MS, Kim JY, Lee MG, Muallem S, Kurtz I (2002) The cystic fibrosis transmembrane conductance regulator interacts with and regulates the activity of the HCO3 salvage transporter human Na+-HCO3 cotransport isoform 3. J Biol Chem 277:50503–50509CrossRefPubMedGoogle Scholar
  70. 70.
    Parker MD, Boron WF, Tanner MJA (2002) Characterization of human “AE4” as an electroneutral, sodium-dependent bicarbonate transporter. FASEB J 16:A796CrossRefGoogle Scholar
  71. 71.
    Parker MD, Ourmozdi EP, Tanner MJ (2001) Human BTR1, a new bicarbonate transporter superfamily member and human AE4 from kidney. Biochem Biophys Res Commun 282:1103–1109CrossRefPubMedGoogle Scholar
  72. 72.
    Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114PubMedGoogle Scholar
  73. 73.
    Pushkin A, Abuladze N, Lee I, Newman D, Hwang J, Kurtz I (1999) Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J Biol Chem 274:16569–16575CrossRefPubMedGoogle Scholar
  74. 74.
    Pushkin A, Abuladze N, Newman D, Lee I, Xu G, Kurtz I (2000) Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family. Biochim Biophys Acta 1493:215–218CrossRefPubMedGoogle Scholar
  75. 75.
    Pushkin A, Abuladze N, Newman D, Muronets V, Sassani P, Tatishchev S, Kurtz I (2003) The COOH termini of NBC3 and the 56-kDa H+-ATPase subunit are PDZ motifs involved in their interaction. Am J Physiol 284:C667–C673Google Scholar
  76. 76.
    Romero MF, Fong P, Berger UV, Hediger MA, Boron WF (1998) Cloning and functional expression of rNBC, an electrogenic Na+-HCO3 cotransporter from rat kidney. Am J Physiol 274:F425–F432PubMedGoogle Scholar
  77. 77.
    Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 387:409–413CrossRefPubMedGoogle Scholar
  78. 78.
    Romero MF, Henry D, Nelson S, Harte PJ, Dillon AK, Sciortino CM (2000) Cloning and characterization of a Na+-driven anion exchanger (NDAE1). A new bicarbonate transporter. J Biol Chem 275:24552–24559CrossRefPubMedGoogle Scholar
  79. 79.
    Russell JM, Boron WF (1976) Role of chloride transport in regulation of intracellular pH. Nature 264:73–74PubMedGoogle Scholar
  80. 80.
    Sabolic I, Brown D, Gluck SL, Alper SL (1997) Regulation of AE1 anion exchanger and H+-ATPase in rat cortex by acute metabolic acidosis and alkalosis. Kidney Int 51:125–137PubMedGoogle Scholar
  81. 81.
    Sahr KE, Taylor WM, Daniels BP, Rubin HL, Jarolim P (1994) The structure and organization of the human erythroid anion exchanger (AE1) gene. Genomics 24:491–501CrossRefPubMedGoogle Scholar
  82. 82.
    Sander T, Toliat MR, Heils A, Leschik G, Becker C, Ruschendorf F, Rohde K, Mundlos S, Nurnberg P (2002) Association of the 867Asp variant of the human anion exchanger 3 gene with common subtypes of idiopathic generalized epilepsy. Epilepsy Res 51:249–255CrossRefPubMedGoogle Scholar
  83. 83.
    Sassani P, Pushkin A, Gross E, Gomer A, Abuladze N, Dukkipati R, Carpenito G, Kurtz I (2002) Functional characterization of NBC4: a new electrogenic sodium- bicarbonate cotransporter. Am J Physiol 282:C408–C416Google Scholar
  84. 84.
    Schmitt BM, Berger UV, Douglas RM, Bevensee MO, Hediger MA, Haddad GG, Boron WF (2000) Na/HCO3 cotransporters in rat brain: expression in glia, neurons, and choroid plexus. J Neurosci 20:6839–6848PubMedGoogle Scholar
  85. 85.
    Schmitt BM, Biemesderfer D, Romero MF, Boulpaep EL, Boron WF (1999) Immunolocalization of the electrogenic Na+/HCO3 cotransporter in mammalian and amphibian kidney. Am J Physiol 276:F27–F36PubMedGoogle Scholar
  86. 86.
    Schopfer LM, Salhany JM (1995) Characterization of the stilbenedisulfonate binding site on band 3. Biochemistry 34:8320–8329PubMedGoogle Scholar
  87. 87.
    Schwiening CJ, Boron WF (1994) Regulation of intracellular pH in pyramidal neurons from the rat hippocampus by Na+-dependent Cl--HCO3 exchange. J Physiol (Lond) 475:59–67Google Scholar
  88. 88.
    Sciortino CM, Romero MF (1999) Cation and voltage dependence of rat kidney electrogenic Na+-HCO3 cotransporter, rkNBC, expressed in oocytes. Am J Physiol 277:F611–F623PubMedGoogle Scholar
  89. 89.
    Shayakul C, Alper SL (2000) Inherited renal tubular acidosis. Curr Opin Nephrol Hypertens 9:541–546CrossRefPubMedGoogle Scholar
  90. 90.
    Sterling D, Reithmeier RA, Casey JR (2001) A transport metabolon: functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276:47886–47894PubMedGoogle Scholar
  91. 91.
    Stewart AK, Chernova MN, Shmukler BE, Wilhelm S, Alper SL (2002) Regulation of AE2-mediated Cl- transport by intracellular or by extracellular pH requires highly conserved amino acid residues of the AE2 NH2-terminal cytoplasmic domain. J Gen Physiol 120:707–722CrossRefPubMedGoogle Scholar
  92. 92.
    Stuart-Tilley A, Sardet C, Pouyssegur J, Schwartz MA, Brown D, Alper SL (1994) Immunolocalization of anion exchanger AE2 and cation exchanger NHE1 in distinct, adjacent cells of gastric mucosa. Am J Physiol 266:C559–C568PubMedGoogle Scholar
  93. 93.
    Stuart-Tilley AK, Shmukler BE, Brown D, Alper SL (1998) Immunolocalization and tissue-specific splicing of AE2 anion exchanger in mouse kidney. J Am Soc Nephrol 9:946–959PubMedGoogle Scholar
  94. 94.
    Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos J, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340CrossRefPubMedGoogle Scholar
  95. 95.
    Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, Shayakul C, Brugnara C, Takao M, Veerakul G, Alper SL (1998) Novel AE1 mutations in recessive distal renal tubular acidosis: rescue of loss-of-function by glycophorin A. J Clin Invest 102:2173–2179PubMedGoogle Scholar
  96. 96.
    Thomas RC (1976) Ionic mechanism of the H+ pump in a snail neurone. Nature 262:54–55PubMedGoogle Scholar
  97. 97.
    Thomas RC (1976) The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J Physiol (Lond) 255:715–735Google Scholar
  98. 98.
    Thomas RC (1977) The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol (Lond) 273:317–338Google Scholar
  99. 99.
    Tsuganezawa H, Kobayashi K, Iyori M, Araki T, Koizumi A, Watanabe SI, Kaneko A, Fukao T, Monkawa T, Yoshida T, Kim DK, Kanai Y, Endou H, Hayashi M, Saruta T (2000) A new member of the HCO3 transporter superfamily is an apical anion exchanger of β-intercalated cells in the kidney. J Biol Chem 276:8180–8189CrossRefGoogle Scholar
  100. 100.
    Van Adelsberg JS, Edwards JC, Al Awqati Q (1993) The apical Cl/HCO3 exchanger of ß intercalated cells. J Biol Chem 268:11283–11289PubMedGoogle Scholar
  101. 101.
    Vince JW, Reithmeier RA (1998) Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte Cl-/HCO3 exchanger. J Biol Chem 273:28430–28437CrossRefPubMedGoogle Scholar
  102. 102.
    Virkki LV, Choi I, Davis BA, Boron WF (2003) Cloning of a Na+-driven Cl-HCO3 exchanger from squid giant fiber lobe. Am J Physiol Cell Physiol 285:C771–C780Google Scholar
  103. 103.
    Virkki LV, Wilson DA, Vaughan-Jones RD, Boron WF (2002) Functional characterization of human NBC4 as an electrogenic Na+-HCO3 cotransporter (NBCe2). Am J Physiol 282:C1278–C1289Google Scholar
  104. 104.
    Wang CZ, Yano H, Nagashima K, Seino S (2000) The Na+-driven Cl-/HCO3 exchanger: cloning, tissue distribution, and functional characterization. J Biol Chem 275:35486–35490CrossRefPubMedGoogle Scholar
  105. 105.
    Wang Z, Conforti L, Petrovic S, Amlal H, Burnham CE, Soleimani M (2001) Mouse Na+:HCO3 cotransporter isoform NBC-3 (kNBC-3): cloning, expression, and renal distribution. Kidney Int 59:1405–1414CrossRefPubMedGoogle Scholar
  106. 106.
    Williams JB, Powell PC, Bevensee MO (2003) Electrogenic Na/bicarbonate cotransporter (NBCe1) variants in rat heart. FASEB J 17:A463Google Scholar
  107. 107.
    Wood PG, Muller H, Sovak M, Passow H (1992) Role of Lys 558 and Lys 869 in substrate and inhibitor binding to the murine band 3 protein: a study of the effects of site-directed mutagenesis of the band 3 protein expressed in the oocytes of Xenopus laevis. J Membr Biol 127:139–148PubMedGoogle Scholar
  108. 108.
    Xu J, Wang Z, Barone S, Petrovic M, Amlal H, Conforti L, Petrovic S, Soleimani M (2003) Expression of the Na+-HCO3 cotransporter NBC4 in rat kidney and characterization of a novel NBC4 variant. Am J Physiol 284:F41–F50Google Scholar
  109. 109.
    Yannoukakos D, Stuart-Tilley A, Fernandez HA, Fey P, Duyk G, Alper SL (1994) Molecular cloning, expression and chromosomal localization of two isoforms of the AE3 anion exchanger from human heart. Circ Res 75:603–614PubMedGoogle Scholar
  110. 110.
    Young MT, Beckmann R, Toye AM, Tanner MJA (2000) Red-cell glycophorin A-band 3 interactions associated with the movement of band 3 to the cell surface. Biochem J 350:53–60CrossRefPubMedGoogle Scholar
  111. 111.
    Zhang D, Kiyatkin A, Bolin JT, Low PS (2000) Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 96:2925–2933PubMedGoogle Scholar
  112. 112.
    Zhao R, Reithmeier RA (2001) Expression and characterization of the anion transporter homologue YNL275w in Saccharomyces cerevisiae. Am J Physiol 281:C33–C45Google Scholar
  113. 113.
    Zhu Q, Lee DW, Casey JR (2003) Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J Biol Chem 278:3112–3120CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  1. 1.Departments of Physiology and Biophysics and PharmacologyCase Western Reserve University School of MedicineClevelandUSA
  2. 2.Department of Cellular and Molecular PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations