Pflügers Archiv

, Volume 446, Issue 6, pp 658–664 | Cite as

Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise

  • Pedro Tauler
  • Antoni Aguiló
  • Isabel Gimeno
  • Emilia Fuentespina
  • Josep A. Tur
  • Antoni PonsEmail author
Exercise, Temperature Regulation


We determined the effects of dietary vitamin C supplementation on erythrocyte antioxidant enzymes and on plasma antioxidants during athletic competition and short-term recovery. Blood samples were taken from 16 volunteer endurance athletes, participating in a duathlon competition, under basal conditions and both immediately and 1 h after the competition. The results were analysed taking into account the individual vitamin C intake and the plasma levels. Athletes were assigned to either the vitamin C-supplemented or control groups (n=8 each). The control group had normal plasma ascorbate levels, the supplemented group high levels as a result of the higher vitamin C intake. Uric acid and lactate dehydrogenase increased after the competition only in the control group. Plasma ascorbate decreased after short-term recovery in the supplemented group. Erythrocyte catalase activity increased after the competition in the supplemented group. Glutathione peroxidase activity (determined with cumene hydroperoxide as substrate) increased only in the control group after short-term recovery. This pattern may suggest an important role for plasma ascorbate, and dietary vitamin C supplementation, in the defence against oxidative stress induced by exercise and in avoiding negative effects on erythrocyte integrity.


Ascorbate Urate Antioxidant enzymes Exercise Oxidative stress 


  1. 1.
    Aebi HE (1984) Catalase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 273–286Google Scholar
  2. 2.
    Aguiló A, Tauler P, Guix MP, Villa G, Córdova A, Tur JA, Pons A (2003) Effect of exercise intensity and training on antioxidants and cholesterol profile in cyclists. J Nutr Biochem (In press)Google Scholar
  3. 3.
    Alessio H (1993) Exercise-induced oxidative stress. Med Sci Sports Exerc 25:218–224PubMedGoogle Scholar
  4. 4.
    Baker JK, Kapeghian J, Verlangieri A (1983) Determination of ascorbic acid and dehydroascorbic acid in blood plasma samples. J Liquid Chromatogr 6:1319–1332Google Scholar
  5. 5.
    Bendich A (1989) Interaction between antioxidant vitamins C and E and their effect on immune responses. In: Miquel J, Quintanilla AT, Weber H (eds) Handbook of free radicals and antioxidants in biomedicine II. CRC Press, Boca Raton, pp 153–160Google Scholar
  6. 6.
    Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health?. Am J Clin Nutr 72:637S–646SPubMedGoogle Scholar
  7. 7.
    Clemens MR, Waller HD (1987) Lipid peroxidation in erythrocytes. Chem Phys Lipids 45:251–268PubMedGoogle Scholar
  8. 8.
    Committee on Enzymes, The Scandinavian Society for Clinical Chemistry and Clinical Physiology (1974) Recommended methods for the determination of four enzymes in blood. Scand J Clin Lab Invest 33:291–306PubMedGoogle Scholar
  9. 9.
    Davies K, Quintanilha A, Brooks A, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Soc Trans 21:346–353Google Scholar
  10. 10.
    Dhariwal KR, Washko PW Levine M (1990) Determination of dehydroascorbic acid using high performance liquid chomatography with coulometric electrochemical detection. Anal Biochem 189:18–23PubMedGoogle Scholar
  11. 11.
    Feinberg M, Favie C, Ireland-Ripert J (1991) Répertoire géneral des aliments. Tec et Doc Lavoisier, ParisGoogle Scholar
  12. 12.
    Flohé L, Gunzler WA (1984) Assays for glutathione peroxidase. Methods Enzymol 105:114–121PubMedGoogle Scholar
  13. 13.
    Fossati P, Prencipe L, Berti G (1980) Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26:227–231PubMedGoogle Scholar
  14. 14.
    Garcia-de-la-Asunción J, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Viña J (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10:333–338PubMedGoogle Scholar
  15. 15.
    Hellsten Y (2000) The role of xanthine oxidase in exercise. In Sen CK, Parker L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier, Amsterdam, pp 153–176Google Scholar
  16. 16.
    Jones DP, Eklow L, Thor H, Orrenius S (1981) Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch Biochem Biophys 210:505–516PubMedGoogle Scholar
  17. 17.
    Kanter M (1994) Free radicals, exercise and antioxidant supplementation. Int J Sport Nutr 4:205–220PubMedGoogle Scholar
  18. 18.
    Kanter MM, Lesmes GR, Kaminsky LA, Laham-Saeger J, Nequin ND (1988) Serum creatine kinase and lactate dehydrogenase changes following an eighty kilometres race. Eur J Appl Physiol 57:60–63Google Scholar
  19. 19.
    Mataix J, Mañas M, Llopis J, Martínez de Victoria E, Juan J, Borregón A (1998) Tablas de composición de alimentos españoles. INTA, Universidad de Granada, GranadaGoogle Scholar
  20. 20.
    Maxwell SR, Jakeman P, Thomason H, Leguen C, Thorpe GH (1993) Changes in plasma antioxidant status during eccentric exercise and the effect of vitamin supplementation. Free Radic Res Commun 19:191–202PubMedGoogle Scholar
  21. 21.
    McCord J, Fridovich I (1969) Superoxide dismutase an enzymic for erythrocuprein (haemocuprein). J Biol Chem 244:6049–6055PubMedGoogle Scholar
  22. 22.
    Mena P, Maynar M, Gutierrez JM, Maynar J, Timon J, Campillo JE (1991) Erythrocyte free radical scavenger enzymes in bicycle professional racers. Adaptation to training. Int J Sports Med 12:563–566PubMedGoogle Scholar
  23. 23.
    Moreiras O, Carbajal A, Cabrera L, Cuadrado C (1999) Tablas de composición de alimentos. Pirámide, MadridGoogle Scholar
  24. 24.
    Niess AM, Dickhuth HH, Northoff H, Fehrenbach E (1999) Free radicals and oxidative stress in exercise-immunological aspects. Exerc Immunol Rev 5:22–56PubMedGoogle Scholar
  25. 25.
    Novros JS, Koch TR, Knoblock EC (1979) Improved method for accurate quantitation of total and conjugated bilirubin in serum. Clin Chem 25:1891–1899PubMedGoogle Scholar
  26. 26.
    Parera M, Guix P, Pérez G, Quetglas P, Fuentespina E, Llompart I (1996) Estudio del error aleatorio en distintos parámetros de rutina bioquímica en el autoanalizador DAX-78. Quim Clin 15:232–239Google Scholar
  27. 27.
    Pearlman FC, Lee RT (1974) Detection and measurement of total bilirubin in serum, with use of surfactants as solubilizing agents. Clin Chem 20:447–53PubMedGoogle Scholar
  28. 28.
    Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, Taniguchi N, Ohno H (1996) Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise. Eur J Appl Physiol 72:189–194Google Scholar
  29. 29.
    Rifkind M, Stäubli M, Straub PW (1983) Impaired red cell filterability with elimination of old red blood cell during a 100Km race. J Appl Physiol 54:827–830PubMedGoogle Scholar
  30. 30.
    Ripoll L (1992) Cocina de las Baleares. Ripoll, Palma de MallorcaGoogle Scholar
  31. 31.
    Rivers JM (1987) Safety of high-level vitamin C ingestion. Ann N Y Acad Sci 498:445–454PubMedGoogle Scholar
  32. 32.
    Robertson JD, Maughan RJ, Duthie GG, Morrice PC (1991) Increased blood antioxidant systems of runners in response to training load. Clin Sci 80:611–618PubMedGoogle Scholar
  33. 33.
    Stagsted J, Young JF (2002) Large differences in erythrocyte stability between species reflect different antioxidative defense mechanisms. Free Radic Res 36:779–789CrossRefPubMedGoogle Scholar
  34. 34.
    Tauler P, Aguiló A, Gimeno I, Guix MP, Pons A (1999) Regulation of erythrocyte antioxidant enzyme activities in athletes during competition and short-term recovery. Pflugers Arch 438:782–787Google Scholar
  35. 35.
    Tauler P, Aguiló A, Fuentespina E, Tur JA, Pons A (2001) Diet supplementation with vitamin E, vitamin C and β-carotene cocktail enhances basal neutrophil antioxidant enzymes in athletes. Pflugers Arch 443:791–797Google Scholar
  36. 36.
    Tsao CS, Salimi, SL (1982) Differential determination of L-ascorbic acid andd-isoascorbic acid by reversed-phase high performance liquid chomatography with electrochemical detection. J Chromatogr 245:355–358PubMedGoogle Scholar
  37. 37.
    Viña J, Servera E, Asensi J, Pallardo FV, Ferrero JA, Garcia-de-la-Asunción J, Anton V, Marin J (1996) Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O2 therapy. J Appl Physiol 81:2198–2202PubMedGoogle Scholar
  38. 38.
    Viña J, Gimeno A, Sastre J, Desco C, Asensi M, Pallardó FV, Cuesta A, Ferrero JA, Terada LS, Repine JE (2000) Mechanisms of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. Life Sci 49:539–544Google Scholar
  39. 39.
    Vuilleumier JP, Keller HE, Fidanza F (1986) Vitamin nutriture methodology. Vitamin E (α-tocoferol). In Fidanza F (ed) Nutritional status assessment. Chapman and Hall, London, pp 209–213Google Scholar
  40. 40.
    Zamocky M, Koller F (1999) Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 72:19–66CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag  2003

Authors and Affiliations

  • Pedro Tauler
    • 1
  • Antoni Aguiló
    • 1
  • Isabel Gimeno
    • 1
  • Emilia Fuentespina
    • 2
  • Josep A. Tur
    • 1
  • Antoni Pons
    • 1
    Email author
  1. 1.Laboratori de Ciències de l'Activitat Física, Dept. Biologia Fonamental i Ciències de la SalutUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Laboratori del CarmeHospital Son Dureta, INSALUDPalma de MallorcaSpain

Personalised recommendations