Pflügers Archiv

, Volume 447, Issue 5, pp 728–734 | Cite as

The concentrative nucleoside transporter family, SLC28

  • Jennifer H. Gray
  • Ryan P. Owen
  • Kathleen M. Giacomini
The ABC of Solute Carriers Guest Editor: Matthias A. Hediger


The SLC28 family consists of three subtypes of sodium-dependent, concentrative nucleoside transporters, CNT1, CNT2, and CNT3 (SLC28A1, SLC28A2, and SLC28A3, respectively), that transport both naturally occurring nucleosides and synthetic nucleoside analogs used in the treatment of various diseases. These subtypes differ in their substrate specificities: CNT1 is pyrimidine-nucleoside preferring, CNT2 is purine-nucleoside preferring, and CNT3 transports both pyrimidine and purine nucleosides. Recent studies have identified key amino acid residues that are determinants of pyrimidine and purine specificity of CNT1 and CNT2. The tissue distributions of the CNTs vary: CNT1 is localized primarily in epithelia, whereas CNT2 and CNT3 have more generalized distributions. Nucleoside transporters in the SLC28 and SLC29 families play critical roles in nucleoside salvage pathways where they mediate the first step of nucleotide biosynthesis. In addition, these transporters work in concert to terminate adenosine signaling. SLC28 family members are crucial determinants of response to a variety of anticancer and antiviral nucleoside analogs, as they modulate the entry of these analogs into target tissues. Further, this family is involved in the absorption and disposition of many nucleoside analogs. Several CNT single nucleoside polymorphisms (SNPs) have been identified, but have yet to be characterized.


Sodium dependent Concentrative Transporter Nucleoside Nucleoside analog CNT1 CNT2 CNT3 



This work was supported by GM 61390 and GM 42230.


  1. 1.
    Anderson CM, Xiong W, Young JD, Cass CE, Parkinson FE (1996) Demonstration of the existence of mRNAs encoding N1/cif and N2/cit sodium/nucleoside cotransporters in rat brain. Brain Res Mol Brain Res 42:358–361CrossRefPubMedGoogle Scholar
  2. 2.
    Belt JA, Marina NM, Phelps DA, Crawford CR (1993) Nucleoside transport in normal and neoplastic cells. Adv Enzyme Regul 33:235–252CrossRefPubMedGoogle Scholar
  3. 3.
    Che M, Ortiz DF, Arias IM (1995) Primary structure and functional expression of a cDNA encoding the bile canalicular, purine-specific Na+-nucleoside cotransporter. J Biol Chem 270:13596–13599CrossRefPubMedGoogle Scholar
  4. 4.
    Craig JE, Zhang Y, Gallagher MP (1994) Cloning of the nupC gene of Escherichia coli encoding a nucleoside transport system, and identification of an adjacent insertion element, IS 186. Mol Microbiol 11:1159–1168PubMedGoogle Scholar
  5. 5.
    Del Santo B, Valdes R, Mata J, Felipe A, Casado FJ, Pastor-Anglada M (1998) Differential expression and regulation of nucleoside transport systems in rat liver parenchymal and hepatoma cells. Hepatology 28:1504–1511PubMedGoogle Scholar
  6. 6.
    Dresser MJ, Gerstin KM, Gray AT, Loo DD, Giacomini KM (2000) Electrophysiological analysis of the substrate selectivity of a sodium-coupled nucleoside transporter (rCNT1) expressed in Xenopus laevis oocytes. Drug Metab Dispos 28:1135–1140PubMedGoogle Scholar
  7. 7.
    Felipe A, Valdes R, Santo B, Lloberas J, Casado J, Pastor-Anglada M (1998) Na+-dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells. Biochem J 330:997–1001PubMedGoogle Scholar
  8. 8.
    Galmarini CM, Mackey JR, Dumontet C (2001) Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 15:875–890CrossRefPubMedGoogle Scholar
  9. 9.
    Gerstin KM, Dresser MJ, Wang J, Giacomini KM (2000) Molecular cloning of a Na+-dependent nucleoside transporter from rabbit intestine. Pharm Res 17:906–910CrossRefPubMedGoogle Scholar
  10. 10.
    Gerstin KM, Dresser MJ, Giacomini KM (2002) Specificity of human and rat orthologs of the concentrative nucleoside transporter, SPNT. Am J Physiol 283:F344–F349Google Scholar
  11. 11.
    Gomez-Angelats M, del Santo B, Mercader J, Ferrer-Martinez A, Felipe A, Casado J, Pastor-Anglada M (1996) Hormonal regulation of concentrative nucleoside transport in liver parenchymal cells. Biochem J 313:915–920PubMedGoogle Scholar
  12. 12.
    Graham KA, Leithoff J, Coe IR, Mowles D, Mackey JR, Young JD, Cass CE (2000) Differential transport of cytosine-containing nucleosides by recombinant human concentrative nucleoside transporter protein hCNT1. Nucleosides Nucleotides Nucleic Acids 19:415–434PubMedGoogle Scholar
  13. 13.
    Hamilton SR, Yao SY, Ingram JC, Hadden DA, Ritzel MW, Gallagher MP, Henderson PJ, Cass CE, Young JD, Baldwin SA (2001) Subcellular distribution and membrane topology of the mammalian concentrative Na+-nucleoside cotransporter rCNT1. J Biol Chem 276:27981–27988CrossRefPubMedGoogle Scholar
  14. 14.
    Huang QQ, Yao SY, Ritzel MW, Paterson AR, Cass CE, Young JD (1994) Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. J Biol Chem 269:17757–17760PubMedGoogle Scholar
  15. 15.
    Jackson EK, Dubey RK (2001) Role of the extracellular cAMP-adenosine pathway in renal physiology. Am J Physiol 281:F597–F612Google Scholar
  16. 16.
    Jakobs ES, Paterson AR (1986) Sodium-dependent, concentrative nucleoside transport in cultured intestinal epithelial cells. Biochem Biophys Res Commun 140:1028–1035PubMedGoogle Scholar
  17. 17.
    Karle JM, Anderson LW, Dietrick DD, Cysyk RL (1980) Determination of serum and plasma uridine levels in mice, rats, and humans by high-pressure liquid chromatography. Anal Biochem 109:41–46PubMedGoogle Scholar
  18. 18.
    Lai Y, Bakken AH, Unadkat JD (2002) Simultaneous expression of hCNT1-CFP and hENT1-YFP in Madin-Darby canine kidney cells. Localization and vectorial transport studies. J Biol Chem 277:37711–37717CrossRefPubMedGoogle Scholar
  19. 19.
    Le Hir M, Dubach UC (1984) Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles. Pflugers Arch 401:58–63PubMedGoogle Scholar
  20. 20.
    Le Hir M, Dubach UC (1985) Uphill transport of pyrimidine nucleosides in renal brush border vesicles. Pflugers Arch 404:238–243PubMedGoogle Scholar
  21. 21.
    Loewen SK, Ng AM, Yao SY, Cass CE, Baldwin SA, Young JD (1999) Identification of amino acid residues responsible for the pyrimidine and purine nucleoside specificities of human concentrative Na+ nucleoside cotransporters hCNT1 and hCNT2. J Biol Chem 274:24475–24484CrossRefPubMedGoogle Scholar
  22. 22.
    Lostao MP, Mata JF, Larrayoz IM, Inzillo SM, Casado FJ, Pastor-Anglada M (2000) Electrogenic uptake of nucleosides and nucleoside-derived drugs by the human nucleoside transporter 1 (hCNT1) expressed in Xenopus laevis oocytes. FEBS Lett 481:137–140CrossRefPubMedGoogle Scholar
  23. 23.
    Mackey JR, Yao SY, Smith KM, Karpinski E, Baldwin SA, Cass CE, Young JD (1999) Gemcitabine transport in Xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J Natl Cancer Inst 91:1876–1881CrossRefPubMedGoogle Scholar
  24. 24.
    Mangravite LM, Lipschutz JH, Mostov KE, Giacomini KM (2001) Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line. Am J Physiol 280:F879–F885Google Scholar
  25. 25.
    Mangravite LM, Xiao G, Giacomini KM (2003) Localization of human equilibrative nucleoside transporters, hENT1 and hENT2, in renal epithelial cells. Am J Physiol 284:F902–F910.Google Scholar
  26. 26.
    Mata JF, Garcia-Manteiga JM, Lostao MP, Fernandez-Veledo S, Guillen-Gomez E, Larrayoz IM, Lloberas J, Casado FJ, Pastor-Anglada M (2001) Role of the human concentrative nucleoside transporter (hCNT1) in the cytotoxic action of 5′-deoxy-5-fluorouridine, an active intermediate metabolite of capecitabine, a novel oral anticancer drug. Mol Pharmacol 59:1542–1548PubMedGoogle Scholar
  27. 27.
    Ngo LY, Patil SD, Unadkat JD (2001) Ontogenic and longitudinal activity of Na+-nucleoside transporters in the human intestine. Am J Physiol 280:G475–G481Google Scholar
  28. 28.
    Norholm MH, Dandanell G (2001) Specificity and topology of the Escherichia coli xanthosine permease, a representative of the NHS subfamily of the major facilitator superfamily. J Bacteriol 183:4900–4904CrossRefPubMedGoogle Scholar
  29. 29.
    Pastor-Anglada M, Felipe A, Casado FJ, del Santo B, Mata JF, Valdes R (1998) Nucleoside transporters and liver cell growth. Biochem Cell Biol 76:771–777CrossRefPubMedGoogle Scholar
  30. 30.
    Pastor-Anglada M, Casado FJ, Valdes R, Mata J, Garcia-Manteiga J, Molina M (2001) Complex regulation of nucleoside transporter expression in epithelial and immune system cells. Mol Membr Biol 18:81–85CrossRefPubMedGoogle Scholar
  31. 31.
    Patel DH, Crawford CR, Naeve CW, Belt JA (2000) Cloning, genomic organization and chromosomal localization of the gene encoding the murine sodium-dependent, purine-selective, concentrative nucleoside transporter (CNT2). Gene 242:51–58CrossRefPubMedGoogle Scholar
  32. 32.
    Patil SD, Ngo LY, Glue P, Unadkat JD (1998) Intestinal absorption of ribavirin is preferentially mediated by the Na+-nucleoside purine (N1) transporter. Pharm Res 15:950–952CrossRefPubMedGoogle Scholar
  33. 33.
    Pennycooke M, Chaudary N, Shuralyova I, Zhang Y, Coe IR (2001) Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun 280:951–995CrossRefGoogle Scholar
  34. 34.
    Plagemann PG, Aran JM (1990) Characterization of Na+-dependent, active nucleoside transport in rat and mouse peritoneal macrophages, a mouse macrophage cell line and normal rat kidney cells. Biochim Biophys Acta 1028:289–298CrossRefPubMedGoogle Scholar
  35. 35.
    Ritzel MW, Yao SY, Huang MY, Elliott JF, Cass CE, Young JD (1997) Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). Am J Physiol 272:C707–C714PubMedGoogle Scholar
  36. 36.
    Ritzel MW, Yao SY, Ng AM, Mackey JR, Cass CE, Young JD (1998) Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Mol Membr Biol 15:203–211PubMedGoogle Scholar
  37. 37.
    Ritzel MW, Ng AM, Yao SY, Graham K, Loewen SK, Smith KM, Ritzel RG, Mowles DA, Carpenter P, Chen XZ, Karpinski E, Hyde RJ, Baldwin SA, Cass CE, Young JD (2001) Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J Biol Chem 276:2914–2927CrossRefGoogle Scholar
  38. 38.
    Ruiz-Montasell B, Martinez-Mas JV, Enrich C, Casado FJ, Felipe A, Pastor-Anglada M (1993) Early induction of Na+-dependent uridine uptake in the regenerating rat liver. FEBS Lett 316:85–88CrossRefPubMedGoogle Scholar
  39. 39.
    Schaner ME, Wang J, Zhang L, Su SF, Gerstin KM, Giacomini KM (1999) Functional characterization of a human purine-selective, Na+-dependent nucleoside transporter (hSPNT1) in a mammalian expression system. J Pharmacol Exp Ther 289:1487–1491PubMedGoogle Scholar
  40. 40.
    Schwenk M, Hegazy E, Lopez del Pino V (1984) Uridine uptake by isolated intestinal epithelial cells of guinea pig. Biochim Biophys Acta 805:370–374CrossRefPubMedGoogle Scholar
  41. 41.
    Soler AP, Gilliard G, Xiong Y, Knudsen KA, Martin JL, De Suarez CB, Mota Gamboa JD, Mosca W, Zoppi LB (2001) Overexpression of neural cell adhesion molecule in Chagas' myocarditis. Hum Pathol 32:149–155CrossRefPubMedGoogle Scholar
  42. 42.
    Soler C, Felipe A, Mata JF, Casado FJ, Celada A, Pastor-Anglada M (1998) Regulation of nucleoside transport by lipopolysaccharide, phorbol esters, and tumor necrosis factor-alpha in human B-lymphocytes. J Biol Chem 273:26939–26945CrossRefPubMedGoogle Scholar
  43. 43.
    Spector R (1980) Thymidine accumulation by choroid plexus in vitro. Arch Biochem Biophys 205:85–93PubMedGoogle Scholar
  44. 44.
    Spector R (1982) Nucleoside transport in choroid plexus: mechanism and specificity. Arch Biochem Biophys 216:693–703PubMedGoogle Scholar
  45. 45.
    Spector R, Huntoon S (1984) Specificity and sodium dependence of the active nucleoside transport system in choroid plexus. J Neurochem 42:1048–1052PubMedGoogle Scholar
  46. 46.
    Strauss PR, Sheehan JM, Kashket ER (1976) Membrane transport by murine lymphocytes. I. A rapid sampling technique as applied to the adenosine and thymidine systems. J Exp Med 144:1009–1021PubMedGoogle Scholar
  47. 47.
    Ungemach FR, Hegner D (1978) Uptake of thymidine into isolated rat hepatocytes. Evidence for two transport systems. Hoppe Seylers Z Physiol Chem 359:845–856PubMedGoogle Scholar
  48. 48.
    Valdes R, Casado FJ, Pastor-Anglada M (2002) Cell-cycle-dependent regulation of CNT1, a concentrative nucleoside transporter involved in the uptake of cell-cycle-dependent nucleoside-derived anticancer drugs. Biochem Biophys Res Commun 296:575–579CrossRefPubMedGoogle Scholar
  49. 49.
    Vijayalakshmi D, Belt JA (1988) Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities. J Biol Chem 263:19419–19423PubMedGoogle Scholar
  50. 50.
    Wang J, Giacomini KM (1997) Molecular determinants of substrate selectivity in Na+-dependent nucleoside transporters. J Biol Chem 272:28845–28848CrossRefPubMedGoogle Scholar
  51. 51.
    Wang J, Giacomini KM (1999) Serine 318 is essential for the pyrimidine selectivity of the N2 Na+-nucleoside transporter. J Biol Chem 274:2298–2302CrossRefPubMedGoogle Scholar
  52. 52.
    Wang J, Su SF, Dresser MJ, Schaner ME, Washington CB, Giacomini KM (1997) Na+-dependent purine nucleoside transporter from human kidney: cloning and functional characterization. Am J Physiol 273:F1058–F1065PubMedGoogle Scholar
  53. 53.
    Wu X, Yuan G, Brett CM, Hui AC, Giacomini KM (1992) Sodium-dependent nucleoside transport in choroid plexus from rabbit. Evidence for a single transporter for purine and pyrimidine nucleosides. J Biol Chem 267:8813–8818PubMedGoogle Scholar
  54. 54.
    Xiao G, Wang J, Tangen T, Giacomini KM (2001) A novel proton-dependent nucleoside transporter, CeCNT3, from Caenorhabditis elegans. Mol Pharmacol 59:339–348PubMedGoogle Scholar
  55. 55.
    Yao SY, Ng AM, Sundaram M, Cass CE, Baldwin SA, Young JD (2001) Transport of antiviral 3′-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol Membr Biol 18:161–167CrossRefPubMedGoogle Scholar
  56. 56.
    Yao SY, Ng AM, Loewen SK, Cass CE, Baldwin SA, Young JD (2002) An ancient prevertebrate Na+-nucleoside cotransporter (hfCNT) from the Pacific hagfish (Eptatretus stouti). Am J Physiol 283:C155–C168Google Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • Jennifer H. Gray
    • 1
  • Ryan P. Owen
    • 1
  • Kathleen M. Giacomini
    • 1
  1. 1.Department of Biopharmaceutical SciencesUniversity of California-San FranciscoSan FranciscoUSA

Personalised recommendations