Pflügers Archiv

, Volume 447, Issue 5, pp 610–618 | Cite as

The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology

  • Hannelore Daniel
  • Gabor Kottra
The ABC of Solute Carriers Guest Editor: Matthias A. Hediger

Abstract

Mammalian members of the SLC15 family are electrogenic transporters that utilize the proton-motive force for uphill transport of short chain peptides and peptido-mimetics into a variety of cells. The prototype transporters of this family are PEPT1 (SLC15A1) and PEPT2 (SLC15A2), which mediate the uptake of peptide substrates into intestinal and renal epithelial cells. More recently, other sites of functional expression of the two proteins have been identified such as bile duct epithelium (PEPT1), glia cells and epithelia of the choroid plexus, lung and mammary gland (PEPT2). Both proteins can transport essentially every possible di- and tripeptide regardless of the substrate's net charge, but operate stereoselectively. Based on peptide-like structures, various drugs and prodrugs are transported as well, allowing efficient intestinal absorption of the compounds via PEPT1. In kidney tubules both peptide transporters can mediate the renal reabsorption of the filtered compounds thus affecting their pharmacokinetics. Recently, two new peptide transporters, PHT1 (SLC15A4) and PHT2 (SLC15A3), were identified in mammals. They possess an overall amino acid identity with the PEPT-series of 20% to 25%. PHT1 and PHT2 were shown to transport free histidine and certain di- and tripeptides, but it is not yet clear whether they are located on the plasma membrane or represent lysosomal transporters for the proton-dependent export of histidine and dipeptides from lysosomal protein degradation into the cytosol.

Keywords

Electrogenic transporters Proton oligopeptide cotransporter SLC15 

References

  1. 1.
    Ashida K, Katsura T, Motohashi H, Saito H, Inui K (2002) Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am J Physiol 282:G617–G623Google Scholar
  2. 2.
    Bailey PD, Boyd CA, Bronk JR, Collier ID, Meredith D, Morgan KM, Temple CS (2000) How to make drugs orally active: a substrate template for peptide transporter PepT1. Angew Chem Int Ed Engl 39:505–508CrossRefPubMedGoogle Scholar
  3. 3.
    Berger UV, Hediger MA (1999) Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat Embryol (Berl) 199:439–449Google Scholar
  4. 4.
    Bockman DE, Ganapathy V, Oblak TG, Leibach FH (1997) Localization of peptide transporter in nuclei and lysosomes of the pancreas. Int J Pancreat 22:221–225PubMedGoogle Scholar
  5. 5.
    Bolger MB, Haworth IS, Yeung AK, Ann D, von Grafenstein H, Hamm Alvarez S, Okamoto CT, Kim KJ, Basu SK, Wu S, Lee VHL (1998) Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1. J Pharm Sci 87:1286–1291CrossRefPubMedGoogle Scholar
  6. 6.
    Boll M, Herget M, Wagener M, Weber WM, Markovich D, Biber J, Clauss W, Murer H, Daniel H (1996) Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc Natl Acad Sci USA 93:284–289CrossRefPubMedGoogle Scholar
  7. 7.
    Boll M, Markovich D, Weber WM, Korte H, Daniel H, Murer H (1994) Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch 429:146–149PubMedGoogle Scholar
  8. 8.
    Botka CW, Wittig TW, Graul RC, Nielsen CU, Higaka K, Amidon GL, Sadee W (2000) Human proton/oligopeptide transporter (POT) genes: identification of putative human genes using bioinformatics. AAPS PharmSci 2:E16PubMedGoogle Scholar
  9. 9.
    Buyse M, Tsocas A, Walker F, Merlin D, Bado A (2002) PepT1-mediated fMLP transport induces intestinal inflammation in vivo. Am J Physiol 283:C1795–C1800Google Scholar
  10. 10.
    Chen XZ, Steel A, Hediger MA (2000) Functional roles of histidine and tyrosine residues in the H+-peptide transporter PepT1. Biochem Biophys Res Commun 272:726–730CrossRefPubMedGoogle Scholar
  11. 11.
    Chen XZ, Zhu T, Smith DE, Hediger MA (1999) Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2. J Biol Chem 274:2773–2779CrossRefPubMedGoogle Scholar
  12. 12.
    Covitz KMY, Amidon GL, Sadee W (1998) Membrane topology of the human dipeptide transporter, hPEPT1, determined by epitope insertions. Biochemistry 37:15214–15221CrossRefPubMedGoogle Scholar
  13. 13.
    Dantzig AH (1997) Oral absorption of beta-lactams by intestinal peptide transport proteins. Adv Drug Deliv Rev 23:63–76CrossRefGoogle Scholar
  14. 14.
    Doring F, Dorn D, Bachfischer U, Amasheh S, Herget M, Daniel H (1996) Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms. J Physiol (Lond) 497:773–779Google Scholar
  15. 15.
    Doring F, Walter J, Will J, Focking M, Boll M, Amasheh S, Clauss W, Daniel H (1998) Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest 101:2761–2767PubMedGoogle Scholar
  16. 16.
    Doring F, Will J, Amasheh S, Clauss W, Ahlbrecht H, Daniel H (1998) Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J Biol Chem 273:23211–23218CrossRefPubMedGoogle Scholar
  17. 17.
    Dringen R, Hamprecht B, Broer S (1998) The peptide transporter PepT2 mediates the uptake of the glutathione precursor CysGly in astroglia-rich primary cultures. J Neurochem 71:388–393PubMedGoogle Scholar
  18. 18.
    Ezra A, Hoffman A, Breuer E, Alferiev IS, Monkkonen J, El Hanany-Rozen N, Weiss G, Stepensky D, Gati I, Cohen H, Tormalehto S, Amidon GL, Golomb G (2000) A peptide prodrug approach for improving bisphosphonate oral absorption. J Med Chem 43:3641–3652CrossRefPubMedGoogle Scholar
  19. 19.
    Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF, Hediger MA (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563–566Google Scholar
  20. 20.
    Fei YJ, Liu JC, Fujita T, Liang R, Ganapathy V, Leibach FH (1998) Identification of a potential substrate binding domain in the mammalian peptide transporters PEPT1 and PEPT2 using PEPT1-PEPT2 and PEPT2-PEPT1 chimeras. Biochem Biophys Res Commun 246:39–44CrossRefPubMedGoogle Scholar
  21. 21.
    Fei YJ, Liu W, Prasad PD, Kekuda R, Oblak TG, Ganapathy V, Leibach FH (1997) Identification of the histidyl residue obligatory for the catalytic activity of the human H+/peptide cotransporters PEPT1 and PEPT2. Biochemistry 36:452–460CrossRefPubMedGoogle Scholar
  22. 22.
    Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V, Leibach FH (1995) Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem 270:25672–25677CrossRefPubMedGoogle Scholar
  23. 23.
    Gangopadhyay A, Thamotharan M, Adibi SA (2002) Regulation of oligopeptide transporter (Pept-1) in experimental diabetes. Am J Physiol 283:G133–G138Google Scholar
  24. 24.
    Groneberg DA, Doring F, Theis S, Nickolaus M, Fischer A, Daniel H (2002) Peptide transport in the mammary gland: expression and distribution of PEPT2 mRNA and protein. Am J Physiol 282:E1172–E1179Google Scholar
  25. 25.
    Groneberg DA, Nickolaus M, Springer J, Doring F, Daniel H, Fischer A (2001) Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake. Am J Pathol 158:707–714Google Scholar
  26. 26.
    Hussain I, Zanic-Grubisic T, Kudo Y, Boyd CA (2001) Functional and molecular characterization of a peptide transporter in the rat PC12 neuroendocrine cell line. FEBS Lett 508:350–354CrossRefPubMedGoogle Scholar
  27. 27.
    Ihara T, Tsujikawa T, Fujiyama Y, Bamba T (2000) Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion 61:59–67CrossRefPubMedGoogle Scholar
  28. 28.
    Kelty CJ, Brown NJ, Reed MW, Ackroyd R (2002) The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis. Photochem Photobiol Sci 1:158–168CrossRefPubMedGoogle Scholar
  29. 29.
    Knutter I, Rubio-Aliaga I, Boll M, Hause G, Daniel H, Neubert K, Brandsch M (2002) H+-peptide cotransport in the human bile duct epithelium cell line SK-ChA-1. Am J Physiol 283:G222–G229Google Scholar
  30. 30.
    Knutter I, Theis S, Hartrodt B, Born I, Brandsch M, Daniel H, Neubert K (2001) A novel inhibitor of the mammalian peptide transporter PEPT1. Biochemistry 40:4454–4458CrossRefPubMedGoogle Scholar
  31. 31.
    Kottra G, Daniel H (2001) Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry. J Physiol (Lond) 536:495–503Google Scholar
  32. 32.
    Kottra G, Stamfort A, Daniel H (2002) PEPT1 as a paradigm for membrane carriers that mediate electrogenic bidirectional transport of anionic, cationic, and neutral substrates. J Biol Chem 277:32683–32691CrossRefPubMedGoogle Scholar
  33. 33.
    Lee VH, Chu C, Mahlin ED, Basu SK, Ann DK, Bolger MB, Haworth IS, Yeung AK, Wu SK, Hamm-Alvarez S, Okamoto CT (1999) Biopharmaceutics of transmucosal peptide and protein drug administration: role of transport mechanisms with a focus on the involvement of PepT1. J Control Release 62:129–140CrossRefPubMedGoogle Scholar
  34. 34.
    Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH (1995) Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 270:6456–6463PubMedGoogle Scholar
  35. 35.
    Liu W, Liang R, Ramamoorthy S, Fei YJ, Ganapathy ME, Hediger MA, Ganapathy V, Leibach FH (1995) Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim Biophys Acta 1235:461–466CrossRefPubMedGoogle Scholar
  36. 36.
    Mackenzie B, Fei YJ, Ganapathy V, Leibach FH (1996) The human intestinal H+/oligopeptide cotransporter hPEPT1 transports differently-charged dipeptides with identical electrogenic properties. Biochim Biophys Acta 1284:125–128CrossRefPubMedGoogle Scholar
  37. 37.
    Mackenzie B, Loo DD, Fei Y, Liu WJ, Ganapathy V, Leibach FH, Wright EM (1996) Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J Biol Chem 271:5430–5437PubMedGoogle Scholar
  38. 38.
    Merlin D, Si-Tahar M, Sitaraman SV, Eastburn K, Williams I, Liu X, Hediger MA, Madara JL (2001) Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology 120:1666–1679Google Scholar
  39. 39.
    Neumann J, Brandsch M (2003) Delta-aminolevulinic acid transport in cancer cells of the human extrahepatic biliary duct. J Pharmacol Exp Ther 305:219–224CrossRefPubMedGoogle Scholar
  40. 40.
    Ogihara H, Saito H, Shin BC, Terada T, Takenoshita S, Nagamachi Y, Inui K, Takata K (1996) Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem Biophys Res Commun 220:848–852CrossRefPubMedGoogle Scholar
  41. 41.
    Pan X, Terada T, Irie M, Saito H, Inui K (2002) Diurnal rhythm of H+-peptide cotransporter in rat small intestine. Am J Physiol 283:G57–G64Google Scholar
  42. 42.
    Ramamoorthy S, Liu W, Ma YY, Yang-Feng TL, Ganapathy V, Leibach FH (1995) Proton/peptide cotransporter (PEPT 2) from human kidney: functional characterization and chromosomal localization. Biochim Biophys Acta 1240:1–4CrossRefPubMedGoogle Scholar
  43. 43.
    Rubio-Aliaga I, Boll M, Daniel H (2000) Cloning and characterization of the gene encoding the mouse peptide transporter PEPT2. Biochem Biophys Res Commun 276:734–741CrossRefPubMedGoogle Scholar
  44. 44.
    Rubio-Aliaga I, Frey I, Boll M, Groneberg DA, Eichinger HM, Balling R, Daniel H (2003) Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney. Mol Cell Biol 23:3247–3252CrossRefPubMedGoogle Scholar
  45. 45.
    Saito H, Motohashi H, Mukai M, Inui K (1997) Cloning and characterization of a pH-sensing regulatory factor that modulates transport activity of the human H+/peptide cotransporter, PEPT1. Biochem Biophys Res Commun 237:577–582CrossRefPubMedGoogle Scholar
  46. 46.
    Saito H, Okuda M, Terada T, Sasaki S, Inui K (1995) Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney. J Pharmacol Exp Ther 275:1631–1637Google Scholar
  47. 47.
    Saito H, Terada T, Okuda M, Sasaki S, Inui K (1996) Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim Biophys Acta 1280:173–177CrossRefPubMedGoogle Scholar
  48. 48.
    Sakata K, Yamashita T, Maeda M, Moriyama Y, Shimada S, Tohyama M (2001) Cloning of a lymphatic peptide/histidine transporter. Biochem J 356:53–60CrossRefPubMedGoogle Scholar
  49. 49.
    Sawada K, Terada T, Saito H, Hashimoto Y, Inui K (1999) Effects of glibenclamide on glycylsarcosine transport by the rat peptide transporters PEPT1 and PEPT2. Br J Pharmacol 128:1159–1164PubMedGoogle Scholar
  50. 50.
    Shen H, Smith DE, Keep RF, Xiang J, Brosius FC (2003) Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. J Biol Chem 278:4786–4791CrossRefPubMedGoogle Scholar
  51. 51.
    Shen H, Smith DE, Yang T, Huang YG, Schnermann JB, Brosius FC (1999) Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am J Physiol 276:F658–F665PubMedGoogle Scholar
  52. 52.
    Shu C, Shen H, Hopfer U, Smith DE (2001) Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab Dispos 29:1307–1315PubMedGoogle Scholar
  53. 53.
    Shu C, Shen H, Teuscher NS, Lorenzi PJ, Keep RF, Smith DE (2002) Role of PEPT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier: studies in rat choroid plexus epithelial cells in primary culture. J Pharmacol Exp Ther 301:820–829CrossRefPubMedGoogle Scholar
  54. 54.
    Smith DE, Pavlova A, Berger UV, Hediger MA, Yang TX, Huang YNG, Schnermann JB (1998) Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm Res 15:1244–1249CrossRefPubMedGoogle Scholar
  55. 55.
    Steel A, Nussberger S, Romero MF, Boron WF, Boyd CAR, Hediger MA (1997) Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1. J Physiol (Lond) 498:563–569Google Scholar
  56. 56.
    Steiner HY, Naider F, Becker JM (1995) The PTR family: a new group of peptide transporters. Mol Microbiol 16:825–834PubMedGoogle Scholar
  57. 57.
    Takahashi K, Masuda S, Nakamura N, Saito H, Futami T, Doi T, Inui K (2001) Upregulation of H+-peptide cotransporter PEPT2 in rat remnant kidney. Am J Physiol 281:F1109–F1116Google Scholar
  58. 58.
    Tamai I, Nakanishi T, Nakahara H, Sai Y, Ganapathy V, Leibach FH, Tsuji A (1998) Improvement of L-dopa absorption by dipeptidyl derivation, utilizing peptide transporter PepT1. J Pharm Sci 87:1542–1546CrossRefPubMedGoogle Scholar
  59. 59.
    Terada T, Saito H, Mukai M, Inui K (1996) Identification of the histidine residues involved in substrate recognition by a rat H+/peptide cotransporter, PEPT1. FEBS Lett 394:196–200CrossRefPubMedGoogle Scholar
  60. 60.
    Terada T, Saito H, Mukai M, Inui K (1997) Characterization of stably transfected kidney epithelial cell line expressing rat H+/peptide cotransporter PEPT1: localization of PEPT1 and transport of beta-lactam antibiotics. J Pharmacol Exp Ther 281:1415–1421Google Scholar
  61. 61.
    Terada T, Saito H, Sawada K, Hashimoto Y, Inui K (2000) N-terminal halves of rat H+/peptide transporters are responsible for their substrate recognition. Pharm Res 17:15–20CrossRefPubMedGoogle Scholar
  62. 62.
    Terada T, Sawada K, Irie M, Saito H, Hashimoto Y, Inui K (2000) Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2. Pflugers Arch 440:679–684CrossRefPubMedGoogle Scholar
  63. 63.
    Terada T, Sawada K, Saito H, Hashimoto Y, Inui K (1999) Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am J Physiol 276:G1435–G1441PubMedGoogle Scholar
  64. 64.
    Terada T, Sawada K, Saito H, Hashimoto Y, Inui K (2000) Inhibitory effect of novel oral hypoglycemic agent nateglinide (AY4166) on peptide transporters PEPT1 and PEPT2. Eur J Pharmacol 392:11–17CrossRefPubMedGoogle Scholar
  65. 65.
    Thamotharan M, Bawani SZ, Zhou X, Adibi SA (1999) Functional and molecular expression of intestinal oligopeptide transporter (Pept-1) after a brief fast. Metabolism 48:681–684PubMedGoogle Scholar
  66. 66.
    Theis S, Knutter I, Hartrodt B, Brandsch M, Kottra G, Neubert K, Daniel H (2002) Synthesis and characterization of high affinity inhibitors of the H+/peptide transporter PEPT2. J Biol Chem 277:7287–7292CrossRefPubMedGoogle Scholar
  67. 67.
    Thwaites DT, Kennedy DJ, Raldua D, Anderson CM, Mendoza ME, Bladen CL, Simmons NL (2002) H/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na/H exchanger. Gastroenterology 122:1322–1333Google Scholar
  68. 68.
    Tsuji A (1999) Tissue selective drug delivery utilizing carrier-mediated transport systems. J Control Release 62:239–244CrossRefPubMedGoogle Scholar
  69. 69.
    Urtti A, Johns SJ, Sadee W (2001) Genomic structure of proton-coupled oligopeptide transporter hPEPT1 and pH-sensing regulatory splice variant. AAPS PharmSci 3:E6PubMedGoogle Scholar
  70. 70.
    Watanabe K, Sawano T, Terada K, Endo T, Sakata M, Sato J (2002) Studies on intestinal absorption of sulpiride (1): carrier-mediated uptake of sulpiride in the human intestinal cell line Caco-2. Biol Pharm Bull 25:885–890CrossRefPubMedGoogle Scholar
  71. 71.
    Wenzel U, Diehl D, Herget M, Kuntz S, Daniel H (1999) Regulation of the high-affinity H+/peptide cotransporter in renal LLC-PK1 cells. J Cell Physiol 178:341–348CrossRefPubMedGoogle Scholar
  72. 72.
    Wenzel U, Kuntz S, Diestel S, Daniel H (2002) PEPT1-mediated cefixime uptake into human intestinal epithelial cells is increased by Ca2+ channel blockers. Antimicrob Agents Chemother 46:1375–1380CrossRefPubMedGoogle Scholar
  73. 73.
    Yamashita T, Shimada S, Guo W, Sato K, Kohmura E, Hayakawa T, Takagi T, Tohyama M (1997) Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem 272:10205–10211CrossRefPubMedGoogle Scholar
  74. 74.
    Yeung AK, Basu SK, Wu SK, Chu C, Okamoto CT, HammAlvarez SF, von Grafenstein H, Shen WC, Kim KJ, Bolger MB, Haworth IS, Ann DK, Lee VHL (1998) Molecular identification of a role for tyrosine 167 in the function of the human intestinal proton-coupled dipeptide transporter (hPepT1). Biochem Biophys Res Commun 250:103–107CrossRefPubMedGoogle Scholar
  75. 75.
    Zhou X, Thamotharan M, Gangopadhyay A, Serdikoff C, Adibi SA (2000) Characterization of an oligopeptide transporter in renal lysosomes. Biochim Biophys Acta 1466:372–378CrossRefPubMedGoogle Scholar
  76. 76.
    Zhu T, Chen XZ, Steel A, Hediger MA, Smith DE (2000) Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharm Res 17:526–532CrossRefPubMedGoogle Scholar
  77. 77.
    Ziegler TR, Fernandez-Estivariz C, Gu LH, Bazargan N, Umeakunne K, Wallace TM, Diaz EE, Rosado KE, Pascal RR, Galloway JR, Wilcox JN, Leader LM (2002) Distribution of the H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am J Clin Nutr 75:922–930PubMedGoogle Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • Hannelore Daniel
    • 1
  • Gabor Kottra
    • 1
  1. 1.Molecular Nutrition Unit, Institute of Nutritional SciencesTechnical University of MunichFreising-WeihenstephanGermany

Personalised recommendations