Pflügers Archiv

, Volume 447, Issue 5, pp 756–759

The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids

The ABC of Solute Carriers Guest Editor: Matthias A. Hediger

Abstract

The SLC32 family comprises a single member: the vesicular inhibitory amino acid transporter (VIAAT) or vesicular GABA transporter (VGAT). It belongs to a eukaryotic-specific superfamily of H+-coupled amino acid transporters, which also comprises the mammalian SLC36 and SLC38 transporters. VIAAT exchanges GABA or glycine for protons. It is present on synaptic vesicles of GABAergic and glycinergic neurons, and in some endocrine cells, where it ensures the H+-ATPase-driven uptake, and subsequent exocytotic release, of inhibitory amino acids. Despite a similar function in vesicular neurotransmitter loading, VIAAT is not related to the vesicular glutamate transporter (VGLUT, SLC17) or the vesicular monoamine transporter/vesicular acetylcholine transporter (VMAT/VACHT, SLC18) proteins.

Keywords

GABA Glycine Neurotransmitter transporter Synaptic vesicle Secretion 

References

  1. 1.
    Bedet C, Isambert M, Henry J, Gasnier B (2000) Constitutive phosphorylation of the vesicular inhibitory amino acid transporter in rat central nervous system. J Neurochem 75:1654–1663CrossRefPubMedGoogle Scholar
  2. 2.
    Burger P, Hell J, Mehl E, Krasel C, Lottspeich F, Jahn R (1991) GABA and glycine in synaptic vesicles: storage and transport characteristics. Neuron 7:287–293PubMedGoogle Scholar
  3. 3.
    Chaudhry F, Reimer R, Bellocchio E, Danbolt N, Osen K, Edwards R, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18:9733–9750PubMedGoogle Scholar
  4. 4.
    Chessler S, Simonson W, Sweet I, Hammerle L (2002) Expression of the vesicular inhibitory amino acid transporter in pancreatic islet cells: distribution of the transporter within rat islets. Diabetes 51:1763–1771PubMedGoogle Scholar
  5. 5.
    Christensen H, Fykse E, Fonnum F (1991) Inhibition of gamma-aminobutyrate and glycine uptake into synaptic vesicles. Eur J Pharmacol 207:73–79PubMedGoogle Scholar
  6. 6.
    Dumoulin A, Rostaing P, Bedet C, Levi S, Isambert M, Henry J, Triller A, Gasnier B (1999) Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. J Cell Sci 112:811–823PubMedGoogle Scholar
  7. 7.
    Ebihara S, Obata K, Yanagawa Y (2003) Mouse vesicular GABA transporter gene: genomic organization, transcriptional regulation and chromosomal localization. Brain Res Mol Brain Res 110:126–139CrossRefPubMedGoogle Scholar
  8. 8.
    Engel D, Pahner I, Schulze K, Frahm C, Jarry H, Ahnert-Hilger G, Draguhn A (2001) Plasticity of rat central inhibitory synapses through GABA metabolism. J Physiol (Lond) 535:473–482Google Scholar
  9. 9.
    Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424PubMedGoogle Scholar
  10. 10.
    Kilbourn M (1997) In vivo radiotracers for vesicular neurotransmitter transporters. Nucl Med Biol 24:615–619CrossRefPubMedGoogle Scholar
  11. 11.
    Loscher W, Jackel R, Muller F (1989) Anticonvulsant and proconvulsant effects of inhibitors of GABA degradation in the amygdala-kindling model. Eur J Pharmacol 163:1–14PubMedGoogle Scholar
  12. 12.
    Mayerhofer A, Hohne-Zell B, Gamel-Didelon K, Jung H, Redecker P, Grube D, Urbanski H, Gasnier B, Fritschy J, Gratzl M (2001) Gamma-aminobutyric acid (GABA): a para- and/or autocrine hormone in the pituitary. FASEB J 15:1089–1091PubMedGoogle Scholar
  13. 13.
    McIntire S, Jorgensen E, Horvitz H (1993) Genes required for GABA function in Caenorhabditis elegans. Nature 364:334–337PubMedGoogle Scholar
  14. 14.
    McIntire S, Jorgensen E, Kaplan J, Horvitz H (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364:337–341PubMedGoogle Scholar
  15. 15.
    McIntire S, Reimer R, Schuske K, Edwards R, Jorgensen E (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876CrossRefPubMedGoogle Scholar
  16. 16.
    Muller C, Viry S, Miehe M, Andriamampandry C, Aunis D, Maitre M (2002) Evidence for a gamma-hydroxybutyrate (GHB) uptake by rat brain synaptic vesicles. J Neurochem 80:899–904CrossRefPubMedGoogle Scholar
  17. 17.
    Raghavendra Rao V, Bowen K, Dhodda V, Song G, Franklin JL, Gavva N, Dempsey R (2002) Gene expression analysis of spontaneously hypertensive rat cerebral cortex following transient focal cerebral ischemia. J Neurochem 83:1072–1086CrossRefPubMedGoogle Scholar
  18. 18.
    Redecker P, Pabst H, Loscher W, Steinlechner S (2001) Evidence for microvesicular storage and release of glycine in rodent pinealocytes. Neurosci Lett 299:93–96CrossRefPubMedGoogle Scholar
  19. 19.
    Sagné C, El Mestikawy S, Isambert M, Hamon M, Henry J, Giros B, Gasnier B (1997) Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett 417:177–183CrossRefPubMedGoogle Scholar
  20. 20.
    Takamori S, Riedel D, Jahn R (2000) Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J Neurosci 20:4904–4911PubMedGoogle Scholar
  21. 21.
    Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer W (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147Google Scholar
  22. 22.
    Young G, Jack D, Smith D, Saier MJ (1999) The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415:306–322Google Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  1. 1.Institut de Biologie Physico-ChimiqueCentre National de la Recherche Scientifique UPR 1929ParisFrance

Personalised recommendations