Pflügers Archiv

, Volume 447, Issue 5, pp 532–542 | Cite as

CATs and HATs: the SLC7 family of amino acid transporters

  • François Verrey
  • Ellen I. Closs
  • Carsten A. Wagner
  • Manuel Palacin
  • Hitoshi Endou
  • Yoshikatsu Kanai
The ABC of Solute carriers Guest Editor: Matthias A. Hediger


The SLC7 family is divided into two subgroups, the cationic amino acid transporters (the CAT family, SLC7A1–4) and the glycoprotein-associated amino acid transporters (the gpaAT family, SLC7A5–11), also called light chains or catalytic chains of the hetero(di)meric amino acid transporters (HAT). The associated glycoproteins (heavy chains) 4F2hc (CD98) or rBAT (D2, NBAT) form the SLC3 family. Members of the CAT family transport essentially cationic amino acids by facilitated diffusion with differential trans-stimulation by intracellular substrates. In some cells, they may regulate the rate of NO synthesis by controlling the uptake of l-arginine as the substrate for nitric oxide synthase (NOS). The heterodimeric amino acid transporters are, in contrast, quite diverse in terms of substrate selectivity and function (mostly) as obligatory exchangers. Their selectivity ranges from large neutral amino acids (system L) to small neutral amino acids (ala, ser, cys-preferring, system asc), negatively charged amino acid (system xc ) and cationic amino acids plus neutral amino acids (system y+L and b0,+-like). Cotransport of Na+ is observed only for the y+L transporters when they carry neutral amino acids. Mutations in b0,+-like and y+L transporters lead to the hereditary diseases cystinuria and lysinuric protein intolerance (LPI), respectively.


Cationic amino acid transporter Glycoprotein-associated amino acid transporter Heterodimeric amino acid transporter CAT1 LAT1 b0,+AT xCT Asc-1 Cystinuria Lysinuric protein intolerance 



The laboratory of FV is supported by the Swiss National Science Foundation grant 31-59141.99. The laboratory of MP is supported by the Spanish Dirección General de Investigación Científica y Técnica Research Grant PM 99/0172 and by the support of the Comissionat per a Universitats i Recerca de la Generalitat de Catalunya (Spain). The laboratory of EIC is supported by grants Cl 100/3-4 and the Collaborative Research Centre SFB 553 (project B4) from the Deutsche Forschungsgemeinschaft, Bonn, Germany.


  1. 1.
    Bassi MT, Gasol E, Manzoni M, Pineda M, Riboni M, Martin R, Zorzano A, Borsani G, Palacin M (2001) Identification and characterisation of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc. Pflugers Arch 442:286–296CrossRefGoogle Scholar
  2. 2.
    Bauch C, Verrey F (2002) Apical heterodimeric cystine and cationic amino acid transporter expressed in MDCK cells. Am J Physiol 283:F181–F189Google Scholar
  3. 3.
    Bauch C, Forster N, Loffing-Cueni D, Summa V, Verrey F (2003) Functional cooperation of epithelial heteromeric amino Acid transporters expressed in Madin-Darby canine kidney cells. J Biol Chem 278:1316–1322CrossRefPubMedGoogle Scholar
  4. 4.
    Borsani G, Bassi MT, Sperandeo MP, De Grandi A, Buoninconti A, Riboni M, Manzoni M, Incerti B, Pepe A, Andria G, Ballabio A, Sebastio G (1999) SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat Genet 21:297–301CrossRefGoogle Scholar
  5. 5.
    Braissant O, Gotoh T, Loup M, Mori M, Bachmann C (1999) L-arginine uptake, the citrulline-NO cycle and arginase II in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 70:231–241CrossRefGoogle Scholar
  6. 6.
    Bridges CC, Kekuda R, Wang H, Prasad PD, Mehta P, Huang W, Smith SB, Ganapathy V (2001) Structure, function, and regulation of human cystine/glutamate transporter in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42:47–54Google Scholar
  7. 7.
    Broer A, Wagner CA, Lang F, Broer S (2000) The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 349 Pt 3:787–795Google Scholar
  8. 8.
    Busch AE, Herzer T, Waldegger S, Schmidt F, Palacin M, Biber J, Markovich D, Murer H, Lang F (1994) Opposite directed currents induced by the transport of dibasic and neutral amino acids in Xenopus oocytes expressing the protein rBAT. J Biol Chem 269:25581–25586PubMedGoogle Scholar
  9. 9.
    Calonge MJ, Gasparini P, Chillaron J, Chillon M, Gallucci M, Rousaud F, Zelante L, Testar X, Dallapiccola B, Di Silverio F, Barcelo P, Estivill X, Zorzano A, Nunes V, Palacin M (1994) Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet 6:420–425PubMedGoogle Scholar
  10. 10.
    Cariappa R, Heath-Monnig E, Furesz TC, Kamath SG, Smith CH (2002) Stable polarized expression of hCAT-1 in an epithelial cell line. J Membr Biol 186:23–30CrossRefGoogle Scholar
  11. 11.
    Chairoungdua A, Segawa H, Kim JY, Miyamoto K, Haga H, Fukui Y, Mizoguchi K, Ito H, Takeda E, Endou H, Kanai Y (1999) Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J Biol Chem 274:28845–28848CrossRefGoogle Scholar
  12. 12.
    Chairoungdua A, Kanai Y, Matsuo H, Inatomi J, Kim DK, Endou H (2001) Identification and characterization of a novel member of the heterodimeric amino acid transporter family presumed to be associated with an unknown heavy chain. J Biol Chem 276:49390–49399PubMedGoogle Scholar
  13. 13.
    Chillaron J, Estevez R, Mora C, Wagner CA, Suessbrich H, Lang F, Gelpi JL, Testar X, Busch AE, Zorzano A, Palacin M (1996) Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem 271:17761–17770CrossRefPubMedGoogle Scholar
  14. 14.
    Closs EI, Mann GE (2000) Membrane transport of L-arginine and cationic amino acids analogs. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology. Academic Press, San Diego, pp 225–241Google Scholar
  15. 15.
    Closs EI (2002) Expression, regulation and function of carrier proteins for cationic amino acids. Curr Opin Nephrol Hypertens 11:99–107PubMedGoogle Scholar
  16. 16.
    Dello Strologo L, Pras E, Pontesilli C, Beccia E, Ricci-Barbini V, de Sanctis L, Ponzone A, Gallucci M, Bisceglia L, Zelante L, Jimenez-Vidal M, Font M, Zorzano A, Rousaud F, Nunes V, Gasparini P, Palacin M, Rizzoni G (2002) Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol 13:2547–2553PubMedGoogle Scholar
  17. 17.
    Deves R, Chavez P, Boyd CA (1992) Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. J Physiol (Lond) 454:491–501Google Scholar
  18. 18.
    Deves R, Boyd CAR (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545PubMedGoogle Scholar
  19. 19.
    Feliubadalo L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y, Goldman B, Pras M, Kastner DL, Pras E, Gasparini P, Bisceglia L, Beccia E, Gallucci M, de Sanctis L, Ponzone A, Rizzoni GF, Zelante L, Bassi MT, George AL, Manzoni M, De Grandi A, Riboni M, Endsley JK, Ballabio A, Borsani G, Reig N, Fernandez E, Estevez R, Pineda M, Torrents D, Camps M, Lloberas J, Zorzano A, Palacin M (1999) Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet 23:52–57PubMedGoogle Scholar
  20. 20.
    Fernandez E, Carrascal M, Rousaud F, Abian J, Zorzano A, Palacin M, Chillaron J (2002) rBAT-b0,+AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol 283:F540–F548Google Scholar
  21. 21.
    Fernández E, Torrents D, Chillarón J, Martín del Río R, Zorzano A, Palacín M (2003) Basolateral LAT-2 has a major role in the transepithelial flux ofl-cystine in the renal proximal tubule cell line OK. J Am Soc Nephrol 14:837–847PubMedGoogle Scholar
  22. 22.
    Fernandez J, Bode B, Koromilas A, Diehl JA, Krukovets I, Snider MD, Hatzoglou M (2002) Translation mediated by the internal ribosome entry site of the CAT-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 277:11780–11787CrossRefGoogle Scholar
  23. 23.
    Font MA, Feliubadalo L, Estivill X, Nunes V, Golomb E, Kreiss Y, Pras E, Bisceglia L, d'Adamo AP, Zelante L, Gasparini P, Bassi MT, George AL Jr, Manzoni M, Riboni M, Ballabio A, Borsani G, Reig N, Fernandez E, Zorzano A, Bertran J, Palacin M (2001) Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. Hum Mol Genet 10:305–316CrossRefGoogle Scholar
  24. 24.
    Friesema EC, Docter R, Moerings EP, Verrey F, Krenning EP, Hennemann G, Visser TJ (2001) Thyroid hormone transport by the heterodimeric human system L amino acid transporter. Endocrinology 142:4339–4348Google Scholar
  25. 25.
    Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK, Matsuo H, Cha SH, Endou H, Kanai Y (2000) Identification and characterization of a Na+-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutrald- and l-amino acids. J Biol Chem 275:9690–9698CrossRefPubMedGoogle Scholar
  26. 26.
    Gräf P, Förstermann U, Closs EI (2001) The transport activity of the human cationic amino acid transporter hCAT-1 is downregulated by activation of protein kinase C. Br J Pharmacol 132:1193–1200PubMedGoogle Scholar
  27. 27.
    Habermeier A, Wolf S, Martine U, Graf P, Closs EI (2003) Two amino acid residues determine the low substrate affinity of the human cationic amino acid transporter-2A (hCAT-2A). J Biol Chem (In press)Google Scholar
  28. 28.
    Hosokawa H, Ninomiya H, Sawamura T, Sugimoto Y, Ichikawa A, Fujiwara K, Masaki T (1999) Neuron-specific expression of cationic amino acid transporter 3 in the adult rat brain. Brain Res 838:158–165CrossRefPubMedGoogle Scholar
  29. 29.
    Ito K, Groudine M (1997) A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J Biol Chem 272:26780–26786CrossRefPubMedGoogle Scholar
  30. 30.
    Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632PubMedGoogle Scholar
  31. 31.
    Kanai Y, Fukasawa Y, Cha SH, Segawa H, Chairoungdua A, Kim DK, Matsuo H, Kim JY, Miyamoto K, Takeda E, Endou H (2000) Transport properties of a system y+L neutral and basic amino acid transporter. Insights into the mechanisms of substrate recognition. J Biol Chem 275:20787–20793PubMedGoogle Scholar
  32. 32.
    Kanai Y, Endou H (2001) Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr Drug Metab 2:339–354PubMedGoogle Scholar
  33. 33.
    Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, Kim DK, Inatomi J, Sawa H, Ida Y, Endou H (2001) Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta 1512:335–344CrossRefPubMedGoogle Scholar
  34. 34.
    Kizhatil K, Albritton LM (2002) System y+ localizes to different membrane subdomains in the basolateral plasma membrane of epithelial cells. Am J Physiol 283:C1784–C1794Google Scholar
  35. 35.
    Leclerc D, Boutros M, Suh D, Wu Q, Palacin M, Ellis JR, Goodyer P, Rozen R (2002) SLC7A9 mutations in all three cystinuria subtypes. Kidney Int 62:1550–1559CrossRefPubMedGoogle Scholar
  36. 36.
    Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183–252PubMedGoogle Scholar
  37. 37.
    Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F (1998) Amino acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395:288–291Google Scholar
  38. 38.
    Matsuo H, Kanai Y, Kim JY, Chairoungdua A, Kim do K, Inatomi J, Shigeta Y, Ishimine H, Chaekuntode S, Tachampa K, Choi HW, Babu E, Fukuda J, Endou H (2002) Identification of a novel Na+-independent acidic amino acid transporter with structural similarity to the member of a heterodimeric amino acid transporter family associated with unknown heavy chains. J Biol Chem 277:21017–21026PubMedGoogle Scholar
  39. 39.
    Meier C, Ristic Z, Klauser S, Verrey F (2002) Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 21:580–589PubMedGoogle Scholar
  40. 40.
    Mykkanen J, Torrents D, Pineda M, Camps M, Yoldi ME, Horelli-Kuitunen N, Huoponen K, Heinonen M, Oksanen J, Simell O, Savontaus ML, Zorzano A, Palacin M, Aula P (2000) Functional analysis of novel mutations in y+LAT-1 amino acid transporter gene causing lysinuric protein intolerance (LPI). Hum Mol Genet 9:431–438CrossRefPubMedGoogle Scholar
  41. 41.
    Nakauchi J, Matsuo H, Kim DK, Goto A, Chairoungdua A, Cha SH, Inatomi J, Shiokawa Y, Yamaguchi K, Saito I, Endou H, Kanai Y (2000) Cloning and characterization of a human brain Na+-independent transporter for small neutral amino acids that transports d-serine with high affinity. Neurosci Lett 287:231–235CrossRefPubMedGoogle Scholar
  42. 42.
    Nicholson B, Sawamura T, Masaki T, MacLeod CL (1998) Increased CAT3-mediated cationic amino acid transport functionally compensates in CAT1 knockout cell lines. J Biol Chem 273:14663–14666CrossRefPubMedGoogle Scholar
  43. 43.
    Nicholson B, Manner CK, Kleeman J, MacLeod CL (2001) Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J Biol Chem 276:15881–15885CrossRefGoogle Scholar
  44. 44.
    Palacin M, Borsani G, Sebastio G (2001) The molecular bases of cystinuria and lysinuric protein intolerance. Curr Opin Genet Dev 11:328–335PubMedGoogle Scholar
  45. 45.
    Perkins CP, Mar V, Shutter JR, delCastillo J, Danilenko DM, Medlock ES, Ponting IL, Graham M, Stark KL, Zuo Y, Cunningham JM, Bosselman RA (1997) Anemia and perinatal death result from loss of the murine ecotropic retrovirus receptor mCAT-1. Genes Dev 11:914–925PubMedGoogle Scholar
  46. 46.
    Pfeiffer R, Spindler B, Loffing J, Skelly P, Shoemaker C, Verrey F (1998) Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond. FEBS Lett 439:157–162CrossRefPubMedGoogle Scholar
  47. 47.
    Pfeiffer R, Loffing J, Rossier G, Bauch C, Meier C, Eggermann T, Loffing-Cueni D, Kuhn LC, Verrey F (1999) Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell 10:4135–4147PubMedGoogle Scholar
  48. 48.
    Pfeiffer R, Rossier G, Spindler B, Meier C, Kuhn L, Verrey F (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18:49–57PubMedGoogle Scholar
  49. 49.
    Pineda M, Fernandez E, Torrents D, Estevez R, C L, Camps M, Lloberas J, Zorzano A, Palacin M (1999) Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274:19738–19744PubMedGoogle Scholar
  50. 50.
    Reig N, Chillaron J, Bartoccioni P, Fernandez E, Bendahan A, Zorzano A, Kanner B, Palacin M, Bertran J (2002) The light subunit of system b0,+ is fully functional in the absence of the heavy subunit. EMBO J 21:4906–4914CrossRefPubMedGoogle Scholar
  51. 51.
    Ritchie JW, Peter GJ, Shi YB, Taylor PM (1999) Thyroid hormone transport by 4F2hc-IU12 heterodimers expressed in Xenopus oocytes. J Endocrinol 163:R5–R9PubMedGoogle Scholar
  52. 52.
    Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kuhn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274:34948–34954PubMedGoogle Scholar
  53. 53.
    Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277:44765–44771CrossRefPubMedGoogle Scholar
  54. 54.
    Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458CrossRefPubMedGoogle Scholar
  55. 55.
    Sato H, Tamba M, Okuno S, Sato K, Keino-Masu K, Masu M, Bannai S (2002) Distribution of cystine/glutamate exchange transporter, system xc , in the mouse brain. J Neurosci 22:8028–8033PubMedGoogle Scholar
  56. 56.
    Simell O (2001) Lysinuric protein intolerance and other cationic amino acidurias. In: Scriver CR, Beaudet AL, Sly SW, Valle D (eds) Metabolic and molecular bases of inherited diseases, 8th Edn. McGraw-Hill, New York, pp 4933–4956Google Scholar
  57. 57.
    Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N (2002) Transport of a neurotoxicant by molecular mimicry: the methylmercury-l-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J 367:239–246CrossRefPubMedGoogle Scholar
  58. 58.
    Sperandeo MP, Borsani G, Incerti B, Zollo M, Rossi E, Zuffardi O, Castaldo P, Taglialatela M, Andria G, Sebastio G (1998) The gene encoding a cationic amino acid transporter (SLC7A4) maps to the region deleted in the velocardiofacial syndrome. Genomics 49:230–236PubMedGoogle Scholar
  59. 59.
    Toivonen M, Mykkanen J, Aula P, Simell O, Savontaus ML, Huoponen K (2002) Expression of normal and mutant GFP-tagged y+L amino acid transporter-1 in mammalian cells. Biochem Biophys Res Commun 291:1173–1179CrossRefPubMedGoogle Scholar
  60. 60.
    Torrents D, Estevez R, Pineda M, Fernandez E, Lloberas J, Shi Y, Zorzano A, Palacin M (1998) Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L—a candidate gene for lysinuric protein intolerance. J Biol Chem 273:32437–32445PubMedGoogle Scholar
  61. 61.
    Torrents D, Mykkanen J, Pineda M, Feliubadalo L, Estevez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus ML, Aula P, Palacin M (1999) Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet 21:293–296PubMedGoogle Scholar
  62. 62.
    Uchino H, Kanai Y, Kim do K, Wempe MF, Chairoungdua A, Morimoto E, Anders MW, Endou H (2002) Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol 61:729–737PubMedGoogle Scholar
  63. 63.
    Vékony N, Wolf S, Boissel JP, Gnauert K, Closs EI (2001) Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues. Biochemistry 40:12387–12394CrossRefPubMedGoogle Scholar
  64. 64.
    Verrey F (2003) System L: heteromeric exchanger of large neutral amino acids involved in directional transport. Pflugers Arch445:529–533Google Scholar
  65. 65.
    Wolf DA, Wang S, Panzica MA, Bassily NH, Thompson NL (1996) Expression of a highly conserved oncofetal gene, TA1/E16, in human colon carcinoma and other primary cancers: homology to Schistosoma mansoni amino acid permease and Caenorhabditis elegans gene products. Cancer Res 56:5012–5022PubMedGoogle Scholar
  66. 66.
    Wolf S, Janzen A, Vékony N, Martiné U, Strand D, Closs EI (2002) Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate an amino acid transport activity. Biochem J 364:767–775CrossRefPubMedGoogle Scholar
  67. 67.
    Yaman I, Fernandez J, Sarkar B, Schneider RJ, Snider MD, Nagy LE, Hatzoglou M (2002) Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J Biol Chem 277:41539–41546CrossRefPubMedGoogle Scholar
  68. 68.
    Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H (2001) Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 1514:291–302PubMedGoogle Scholar
  69. 69.
    Zharikov SI, Sigova AA, Chen S, Bubb MR, Block ER (2001) Cytoskeletal regulation of thel-arginine/NO pathway in pulmonary artery endothelial cells. Am J Physiol 280:L465–L473Google Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • François Verrey
    • 1
  • Ellen I. Closs
    • 2
  • Carsten A. Wagner
    • 1
  • Manuel Palacin
    • 3
  • Hitoshi Endou
    • 4
  • Yoshikatsu Kanai
    • 4
  1. 1.Institute of PhysiologyUniversity of ZürichZürichSwitzerland
  2. 2.Department of PharmacologyJohannes Gutenberg UniversityMainzGermany
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of BarcelonaBarcelonaSpain
  4. 4.Department of Pharmacology and ToxicologyKyorin University School of MedicineTokyoJapan

Personalised recommendations